S e st o

AD-A245 958 - - @ A
WHVENUME STGRADUATE SCHOOL

Monterey, California

DTIC
ELECTE |
Q§ FEB 121992
s b THESIS

D

NPSNET: OBJECT ANIMATION
SCRIPT INTERPRETATION SYSTEM

by

Phillip D. West

September 1991

. Thesis Advisors: Michael J. Zyda
David R. Pratt

Approved for public release; distribution is unlimited.

g
SR

92 2 11 087

UNCLASSIFIED
. SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ta, REPORT SECURITY CLASSIFICATION 16, RESTRICTIVE MARKINGS
‘ UNCLASSIFIED)
a URITY CLA ATION AUTHOH X T
SRS A N B OWRET DN S EBUE Approved for public release;
distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) . MONITORING ORGANIZATION REPORT NUMBER(S)
5a. NAME OF PERFORMING OBCANIZATION FEh. OFFICE SYMBOL. | Ta. NAME OF MONITORING ORGANIZATION
(if applicable)
Naval Postgraduate School CS Naval Postgraduate School
* [6c. ADDRESS (City, State, and =IP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
Ba O UNDING/SPONSORIN :--o'l' MENT INSTRUMENT IDEN ATION NUMBER
ORG NIZATION (if applicable)
. ADDRESS (City, State, and ZIP C¢ 70. SOURCE OF FUNDING NUMBERS
8¢c. ADD (City, State, a Code) v WSRO
EI LI E:M!ENH T:NO. NO. NO. ACCESSION NO.
11. TITLE (Include Security Classification)
NPSNET: OBJECT ANIMATION SCRIPT INTERPRETATION SYSTEM
. PERSONAL AU
Wcst, Plulhp D
OF R [135. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) | 15. PAGE COUN
Master $ Thesxs From (9/89 70 _09/91 September 1991 93
B. PIEMENTARY NO .n

The views expressed in this thesis are those of the authors and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17, COSAT! CODES 18. SUBJECT TERMS (Conltinue on reverse if necessary and identily by block number)
FIELD GROUP SUB-GROUP Graphics, Simulations, Scripting, DoD Software Development

19. ABSTRA(L?T_{-cmﬁma on reverse il necessary and identify by block number)

The goal of this work is to develop a text-based script interpretation system for easy and efficient 3D visual
simulations without extensive programming. Scripts are sequences of events representing task-level behaviors in
virtual worlds systems. The Object Animation Script Interpretation System for NPSNET (NPSNET-OASIS),
provides animators at the Naval Postgraduate School a mechanism for interacting with 3D visual simulations via
scripted autonomous players. Libraries of scripts are collected for rapid generation of 3D visual simulations.
NPSNET-OASIS makes use of object-oriented design methodologies for reusability and extensibility. Included in
NPSNET-OASIS are the object tools for script processing, writing, and sorting.

TEUTIONAVAILRBILITY OF ABSTRA ST RS TTACT SECURTTY COASSIFICATION
g UNCLASSIFIED/UNLIMITED [] SAME AS RPT, [jomcusers| UNCLASSIFIED
a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 2ec. O YMBO
Michael J. Zyda 408) 646-2305 CS/Zk

DD FORM 1473, 84 MAR 83 APR edition may be used untl exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

NPSNET: OBJECT ANIMATION SCRIPT INTERPRETATION SYSTEM
by
Phillip D. West
Lieutenant, United States Navy
B.S., Penn State University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

N —
Author: ,
Phillip D. West
Appfoved By: MM

Michael J. Zyda,/Thesfs Advisor

% ,—\// o A LT~
David R. Pratt, Co-Advisor

LW

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

The goal of this work is to develop a text-based script interpretation system for easy
and efficient 3D visual simulations without extensive programming. Scripts are
sequences of events representing task-level behaviors in virtual worlds systems. The
Object Animation Script Interpretation System for NPSNET (NPSNET-OASIS),
provides animators at the Naval Postgraduate School a mechanism for interacting with
3D visual simulations via scripted autonomous players. Libraries of scripts are collected
for rapid generation of 3D visual simulations. NPSNET-OASIS makes use of object-
oriented design methodologies for reusability and extensibility. Included in NPSNET-

OASIS are the object tools for script processing, writing, and sorting.

Accesion For

el \
NTIS CRA&! N

DTIC 7AS 0

U.aason: sed 0

Justification

By

Dist ibution}

Avai:asz!sty Codcs

. i Avair and ;'“C?-.

Dist Special

Al

iii

IL

I

TABLE OF CONTENTS

THE NEED FOR SCRIPT ANIMATION LANGUAGES...........ccoeervrsievrersuns 1
A. INTRODUCTION 1
B. BACKGROUND..........ccoovrrererrissamnnnsessesssssasasssasssssasssassssossasassssssesenssssssssess 2
C. SUMMARY OF CHAPTERS ersssserssssas st s sas s e s s s s s ananee 4
DEVELOPMENT OF NPSNET-OASISooeeterccsnnccsccnnrcnesescsssesens 5
A. DESIGN CRITERIA versesusasasasresasae s s s seseaese s astetnts et e ne bRt e s s R bese 5
B. OBJECT-ORIENTED DESIGNccoruniiinnercriaieenssesecscsessscescnrscnes 5
1. Class HIerarChyc.ccccccrerenmnrerensessesainssnssesssssusncosis sonsansncessssssssesens 5
2. Event Objects......cccouveveruruenee Leesaseeraeerararenssssanonsraresttttssnsacnrateseseress prosssss 6
3. Systeni ObJECEScovvrverererirnrrrictstseeencrsesassesscssnsassens corereresssnsnnans 7
C. NPSNET-OASIS SCRIPT FORMATccoomeemrensessesensssnisssnessssssssssnss 9
OVERVIEW OF NPSNET-OASIS........cccvimnininensensnssnccssssisssecsnsssssssesesssssnes 11
A. SCRIPTING TOOLS.......uoeererenicrressssnsesssessnssessesesssesesessonessossssssses 11
1. SCIIPL PrOCESSON.....ccurveerrernrninnerrsesssssnensassssssasssssssessssssssessonsesasassaes 12
2. SCTIPt GENETALOL......cocreeerrrrrcescnenenssorssssssessasssssasesssesssssnsssssssessresesasesss 13
3. SYSIEM THMEKEEPET covvvvveesronereeemmsssssssssssssssesssmmsnsssssssssssesssssssssnsases 13
B. STRUCTURE OF SCRIPT EVENTS.......cuocniirisirencnrenincsincsessssons 15
1. 3D Icon Identification............... reevenesensnesanensssstessnsasareneserasatotn 15
2. EVENtPOSIION..........ooceerererecnnenassesssesaresesssssssses st snsssssssssacasssssssssasess 16
3. TIMESIAMP cerercericrieesissirisncrnesarsisnes sessssssssssssssssnssssssassnsarssssssssssssase 17
4. Event Attributes.............. reeterereesiessaesae st eseasassnsasbinaetesenreres 17
C. SCRIPT OPTIONS.......ocrrmtrmmincsssisienecssesassnsssessssnsssesenrssssssseseniornes 18
1. Script_Abort...... \ eteresrensaesns s asereeresnrasaens s sessasaasats 18
2. Script_Call rretesesanernessesensssasasaranas - 21
3. Script_Chaini......cocceiiiiimiiicsisieeninecsesenessssssasnssssssnerses 21
4, SCHPI_REPLALeoeccrerernrsrissaensssrsssssssasassessssasassessssssasastsssscasassessassssess 21

iv

S, SCHPt_TIMESIAMP. ...ccoccerrrererereriesenssssnsnsseresesssrsesessasssssesssssssasseressasonss 21

6. Script_Time_AdJustmentcccoevevecemerireenerrsrnneseseeseseesesessssssesens 22

7. SCOPt_TIME_FACOT.....coeeeeeeereirreceeeieneiteceeners e esetessesessesssssnsasanes 22

8. Script_Delay......cccccocrsueururancensrsrrenss w22

0. SCHPL_LOCAONcovetenrriecrnesrirnr eseeennissesesneserassersosessesosssssssnsseonss 22

10. ScrPt_FIle_WIIEcoeieicceericretirens - creveresssesssessssssssisssonssensssesses 23

11, SCTPL_MESSAGE........coooiirirreemmnessssvssseorsesnssssstsarensissssssnsssasssanssssensssnsens 23

1IV. IMPLEMENTATION OF NPSNET-OASIS w24
A, OVERVIEW.iiiirninscssisesissssssesssss csisnstsesessssssssssssssssssenss seas 24

2. DATA STRUCTURES erereseessastenasassasesnasanaes 24

C. NPSNET-OASIS NETWORK INTERFACEccccevet verrrrrererererenennee 24

1. Internal £ata STUCIUIES.....cuvceueeruireceiieieeseennennes creserersssnsiasssnsens 25

2. Message Packets....... it 26

3. Operation of Network Interface..........ccocooerveenreenenesencnrssnenrnrncrrencnnnene 26

V. CONCLUSIONS AND RECOMMENDATIONS.......nceecinreneieeeenraenae 29
A. SUMMARY AND CONCLUSIONcccceovmrurerrnr covreeseossensunsessnsnsassnsnsnss 29

B. LIMITATIONS.......cocoiiet streeeees cevorntsstsmesensasssssasssasasssssssssssasssssssasnsnss 29

C. FUTURE DIRECTIONS.........cocouemtienrestecsiennrsssrsrenssscesssssasssssssssasessrens 29
APPENDIX A: NPSNET-OASIS Script Events, Results, and Errors.............ccouveeee 31
APPENDIX B: NPSNET-OASIS Sample SCIPLS.....ccccvuee worsereersenssensssssersnsssasessensosnes 49
APPENDIX C: Class Definition of SCIPtPIOCESSOTucveerucisesencrrencsosercsonnsesessscsnsese 53
APPENDIX D: Class Definition of ScriptGenerator...........cccoeueeueerecsscsuennrcrceesesenne 55
APPENDIX E: Class Definit;on of TimeKeeper...........oceeiiierireecenssencsvnuerrsnsncaesesess 57
APPENDIX F: Cl:.ss Definition of OasisSYSIEMcccevrreererverimnseccisosessuressessensnsonnse 59
APPENDIX G: Class Definition of OasisSCriptSorter...........oveevcevvcriirvnnreresrsescneenne 62
APPENDIX H: Class Definition of OasisScriptPreprocessor.........ocoeveveeurovesesesesssnes 63

APPENDIX I: Class Definition of ScriptEvents and Attributes.......c.cccceceevreecesnsncsscanes

APPENDIX J: Class Definition of ScriptObject reetsseenetssesera s ssabsaesessersasnssensace

APPENDIX K: NPSNET-OASIS Network Interfaceccceeveeeeeeennen

LIST OF REFERENCES.............. rt eneeaaen ceresaeanaians erssreseresnens ‘

INITIAL DISTRIBUTION LIST ieesesssssetssrene cessane ansasaeteneres

vi

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 4.1

Figure 4.2

LIST OF FIGURES

Root Class of NPSNET-OASIS Class Hierarchy 6
Ancestors of Class SCHPIEVENL.........ociioccciiiecceccnccecnnccieenenas 6
Descer.dants of Class EventAttributecceennreecnnsecenns 7
Ancestors of Class SCTPIODBJECLc.ouvmececererereremsmsenenssescesanssenssonessess 8
Ancestors and Descendants of Class OasisSystem 8
SaMPle SCIIPL ...ttt scsssssse e .9
General Syntax for Script Statements 10
The NPSNET-OASIS System ... 11
Error Mc 3<age .12
Illustration of Timestamp Adjustment Based on System Clock........... 14
Hllustration of Timestamp /£ ljustmeni Based on User Clock............... 14
The 3D Icon Jdentification Nuraber.... .15
UTM Coordinate Position vevessaran seesasasasas ssnssssssersasensaersbess 16
UTM Coordinate Position With Padded Zeros..........cocovvemrvecrnecncneneee 17
Timestamp Formats teeresessesesesuersenentanet e senenenrasanranas 18
Sample Script With Script Options...........cccevcvnensrmsenisnsssnensssssnsesnanns 19
Sample Script With Script OpHons..........coieemuceveencmemcmenrseseesemenesees 20
NPSNET-OASIS Network Interfaceccoooveeiicecsiccmrecnicnniinncnes 25
Network Interface Monitor Routine 28

vii

I. THE NEED FOR SCRIPT ANIMATION LANGUAGES

A. INTRODUCTION

The Graphics and Video Laboratory of the Computer Science Department at the
Naval Postgraduate School (NPS) has a long history of developing 3D visual simulation
systems on inexpensive, commercially available graphics workstations [Ref. 10]. The
visual simulators developed in the Graphics and Video Laboratory include the FOG-M
missile simulator, the VEH vehicle simulator, the Airbome Remotely Operated Device
(AROD), the Moving Platform Simulator series (MPS-1, MPS- 2, and MPS-3), the High
Resolution Digital Terrain Model (HRDTM) system, the Forward Observer Simulator
Trainer (FOST) the NPS Autonomous Underwater Vehicle simulator (NPSAUYV), and the
Command and Control Workstation : the Future system (CCWF). Current visual
simulation efforts are focused on the NPSNET system, a 3D visual simulation system that
utilizes SIMNET and DMA databases.

NPSNET is a real-time, 3D visual simulation systera capable of displaying various
types of vehicles - ground, ships, and aircraft [Ref. 10]. The system is capable of
displaying additional obiects such as missiles. buildings, trees, and environmental effects,
such as fog and smoke. Objects are represented initially by pre-defined 3D icons stored in
Object File Format (OFF) [Ref. 9]. 3D icons are zeometric descriptions of 3D objects.
Vehicle movements in NPSNET are controlled by mouse, spaceballs, and button/
dialboxes. In addition, vehicles can be driven interactively from other workstations by
means of message packets via Ethernet.

In any simulator, the backbone of the system is its internal data structures for

modeling the state of the world [Ref. 10]. Itis from the world state information that visual

displays are generated. Continuous and transient events are referred to as task-level
behaviors in virtual world systems [Ref. 1]. Continuous events are dynamic changes in
motion of 3D icons. Transient events are dyna;nic changes of appearances in virtual 3D
icons, such as explosions and collisions.

When sufficient numbers of actual interactive players are not available, the Graphics
and Video Laboratory requires two methods for generating autonomous players to
populate the world - semi-automated forces and scripting [Ref. 10]. Cumently in
development, semi-automated forces provide intelligent behavioral models to autonomous
players via parallel processing and the network. Scripting provides a programmable
mechanism to add autonomous agents or to change task-level behaviors of 3D icons.

The script system, the Object Animation Script Interpretation System for NPSNET
(NPSNET-OASIS), was developed to meet the requirements of scripted autonomous
plavers. Designed using object-oriented methodologies, NPSNET-OASIS provides the
capabilities to record and playback scripts of task-level behaviors. Scripts in NPSNET-
OASIS are generated as sequences of events in uniform order based on timestamps.
Unlike current systems which are coded in standard C, NPSNET-OASIS is programmed
in C+4+, thus allowing reusability and extensibility. Several instances of NPSNET-OASIS

can be integrated into NPSNET, allowing the simultaneous execution of multiple scripts.

B. BACKGROUND

There are two interaction paradigms in virtual world systems - guiding and
programming [Ref. 1]. Guiding is interaction with objects from built-in procedural
support and specially-designed graphics hardware. Programming is interaction with
objects using special-purpose simulation software for algorithmic description and control.

The principles of software engineering are applied to natural script languages in an

effort to provide a more flexible, extensible, and efficient interactive tool for visual

simulators [Ref. 5]. Libraries of scripts can be generated and reused, allowing fast
prototyping of simulated engagements and tactics. Simple ir design and use, scripts are
basically procedures for controlling 3D icons. Combining -cripts to create larger ones,
supports modular scripting in a high-level of programming. In LISP-based systems, the
rules of the script language are extensible so that new animation procedures and primitives
can be added to the system. Easier to learn than complex lzaguages, script languages can
develop animation scripts faster than a functionally equivalent Ada or C program.

The basis for our research in script systems is on three earlier systems - ASAS, PDI,
and MANUS. Based on the LISP language, Actor/Scriptor Animation System (ASAS), is
a full programming language system for animation and graphics [Ref. 6]. ASAS supports
independent program structures called actors, and includes a set of geometric objects and
operators. Geometric objects include data types such as vectors, colors, polygons, solids,
and lights. Actors are responsible for geometric objects in an animation sequence.
Geometric operators are the tools the animator uses to shape, move, anc orient geometric
. objects.

Influenced by ASAS, Pacific Data Images (PDI) developed a script system on top of
the C programming language for creating animation in the entertainment field [Refs. 3, 5].
The PDI script system supports complex modeling, transformations, and motion. At each
production stage, the script is updated to reflect production changes, and to incorporate
new models and motion data from other parts of script system.

BOLIO, an integrated graphical simulation platform (IGSP), provides users tools to
interact in simulation of task-level behaviors, and event-driven processes in virtual worlds
[Refs. 1, 8). A component of BOLIO, MANUS, provides the built-in language and
processor for associating objects and processes in defining task-level behaviors.

Programmers have access to primitive operations of kinematics and dynamics in a

modular function library. Complex scripts are used for testing and debugging various:

simulation modules, or for defining virtual cnvironraents

C. SUMMARY OF CHAPTERS

The development of NPSNET- OASIS involves understanding of required task-level
behaviors of NPSNET and other 3D visual simulators of the Graphics and Video
Laboratory. In Chapter II, the design of the script system is discussed. Chapter Il
discusses the overview of NPSNET-OASIS. The interaction of NPSNET-OASIS with
NPSNET is discussed in Chapter IV. Limitations and future directions are the subjects of
Chapter V. Appendices include syntax for script events and script options, listings of
script results and script errors, sample scripts, and object class descriptions for NPSNET-

OASIS.

II. DEVELOPMENT OF NPSNET-OASIS

A. DESIGN CRITERIA

The goal of NPSNET-OASIS is to build a scripting system that is reusable and
extensible. In addition, NPSNET-OASIS must be simple for system integration. Previous
3D visual simulators in the Graphics and Video Laboratory were developed with traditional
programming languages such as C, and are not easy to maintain. Whenever, a modification
is made, the entire system is affected. The design of NPSNET-OASIS must be capable of
being adapted easily as modifications are made to NPSNET.

B. OBJECT-ORIENTED DESIGN

The concept of object-oriented design (OOD) involves solving problems by
identifying the real-world objects of the problem, and the processing required of those
objects [Ref. 2]. For this reason, all components of NPSNET-OASIS are represented as
objects. Classes in object-oriented design, distinguished in italics text, are templates for
categories of objects, and provide the means for creating objects. Because objects serve as
cdata abstractions, classes must include data structure definitions and the processing code

for instances of those data structures.

1. Class Hierarchy

OasisObject is the root class of the NPSNET-OASIS class hierarchy, as other classes
in the hierarchy are derived from it. The main descendants of OasisObject -
OasisSystemObject and OasisEventObject, represent the main components of NPSNET-
OASIS (Figure 2.1). OasisSystemObject represents the base class for all system
components in script processing, script generating, and script sorting. OasisEventObjects

represents the base class for all task-level behaviors in 3D icons. For illustrative purposes,

classes of NPSNET-OASIS are segmented from the total class hierarchy, and are

represented as ellipses with arrows pointing to descendants.

2. Event Objects

Each ScriptEvent is composed of an EventObject, EventPosition, TimeStamp, and
EventAttribute, which are descendants of OasisEventObjects (Figure 2.2). EventObjects
provide identification of 3D icons in events, and EventPositions provide the locations of
the events. For every ScriptEvent there is a TimeStamp, which provides the time
mechanism to synchronize all events in uniform order. For additional information in
supporting task-level behaviors of 3D icons, EventAttributes are used to represent the
change of continuous and transient events (Figure 2.3).

Presented in Figure 2.4 are the six classes of script events - VehicleEvent,
WeaponEvent, MiscObjectEvent, EnvironmentEvent, ScriptOption, ScriptComment, and

ScriptOption. ScriptComment and ScriptOption do not represent script events. However,

OasisObject

OasisEventObject

OasisSystemObject

Figure 2.1 Root Class of NPSNET-OASIS Class Hierarchy

EventAttribute
EventObject TimeStamp

Figure 2.2 Ancestors of Class ScriptEvent

ObjectRoll ObjectPitchAngle
ComponentObject ObjectVelocity

ObjectWeapon EventAttribute ObjectHeading

ObjectTrail WeaponSource
Object
FireAlilggmoke ObjectFuel

ObjectExplosion

Figure 2.3 Descendants of Class EventAttribute

script events are supported by them for descriptive narrations in script files and script
synchronization. Communicating with script events, ScriptObjects are the interfaces for
passing messages of task-level behaviors to and from 3D icons. ScriptObjects interact with

virtual world systems for controlling and recording continuous and transient events.

3. System Objects

There are four parent classes for QasisSystem - ScriptFile, ScriptProcessor,
ScriptGenerator, and TimcKeeper (Figure 2.5). Classes are derived from
OasisSystemEvents for supporting system requirements of NPSNET-OASIS. ScriptFiles
provide the mechanism for interacting script files with script systems. EventProcessor is
the base class for the required event processors to the ScriptProcessor. ScriptProcessor is
the tool for interpreting and processing of all script files. The script writer of NPSNET-
OASIS, the ScriptGenerator, records all script objects to a script file. The last parent class,

the TimeKeeper, provides the system times for processing and recording script files.

VehicleEvent
WeaponEvent

MiscObjectObject
@H ScriptObject

EnvironmentEvent

| ScriptComment
ScriptOption

Figure 2.4 Ancestors of Class ScriptObject

ScriptFile

Preprocessor

Figure 2.5 Ancestors and Descendants of Class QasisSystem

ScriptGenerator

OasisScriptSorter

Derived from OasisSystem, are two additional object classes for NPSNET-OASIS
(Figure 2.5). OasisScriptPreprocessor, is a preprocessor for validating script files prior to
processing. Script errors are displayed for further script modification. The second object
class, OasisScriptSorter, provides the sorting of script events based on time stamps. This

tool ensures all script events are in uniform order.

C. NPSNET-OASIS SCRIPT FORMAT

All script files for NPSNET-OASIS are in text-based format allowing the user to use

any standard text-editor for script editing and creation (Figure 2.6). It is easier to edit task-

/***

Description: Sample script of two M-1 tanks
) Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

********t****************************t*****************************[

SCRIPT TIME REFERENCE relative
SCRIPT_ LOCATION 79A~DN

/* Activate clouds with velocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010499 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two M-1 tanks */

VERICLE ACTIVATE 5010001 M1 090.0 40.0 345678 0.0 40.0
VEHICLE ACTIVATE 5010002 M1 090.0 40.0 345678 0.0 45.0
/* Change headings of M-1 tanks */

VEHRICLE_HEADING 5010001 135.0 344955 0.0 2:0.0
VEHICLE_HEADING 5010002 120.0 345958 0.0 2:5.0

/* M-1 tanks passing by a palm tree */

OBJECT_ACTIVATE 5010003 PalmTree 345700 0 4:0.0
OBJECT_DEACTIVATE 5010003 5:35.0

/* Change velocities of M-1 tanks */

VEHICLE SPEED 5010001 5.0 344801 0.0 6:0.0

VEHICLE SPEED 5010001 5.0 344803 0.0 7:25.0

/* M-1 tanks passing by a building */

OBJECT_ACTIVATE 5010004 Building 345700 0.0 8:10.0

OBJECT_DEACTIVATE 5010004 9:40.0
/* Deactivate M 1 tanks */

VEHICLE_PEACTIVATE 5010001 9:45.0
IS VEHICLS_pELCTIVATE 5010002 9:50.0

/* Deactivate clouds */
. ENVIRONHENT_ACTIVATE 5010499 10:0.0

/* End Of Script */

. Figure 2.6 Sample Script

level behaviors of 3D icons in ASCI! text, than it is in binary format. Each script statcm,ent”
is required to be on a separate line. Since most text editors are capable of handling lines up
to 132 columns, there is no reason for a single script statement to not fit all on one line.
There is no limit on number of lines per script file.

All script event statements in NPSNET-OASIS contain a procedural operator and the

required arguments for the procedural operator (Figure 2.7). Procedural operators are

OBJECT ACTIVATE 100 tree 79A-DN-123678 0.0 1:00.0
Procedural Arguments
Operator

Figure 2.7 General Syntax for Script Statements

classified into five groups - vehicle, weapon, object, environment, and script. Al NPSNET-
OASIS procedural operators begin with the group name for rapid parsing and simplicity. A
listing of all script events can be found in Appendix A.

In the interest of clarity and readability, blank lines and comments are permitted
between statements. Comments are used 10 cxplain or describe the script event. Whenever
the symbol ‘/* is encountered on a line, all characters from that point on, until the symbol
‘“*/* is reached, is considcred to be a comment.

Case is not important in procedural operators and required arguments. All characters
are converted to lower case for parsing and extraction. The only time case is imnportant, is
when characters in script file namcs are case sensitive for UNIX based input and output

disk operations.

10

III. OVERVIEW OF NPSNET-OASIS

A. SCRIPTING TOOLS

The NPSNET-OASIS system communicates with three scripting tools - the script

processor, the script generator, and the timekeeper (Figure 3.1). Each tool is independent of

NPSNET-OASIS

SYSTEM TimeKeeper

Script Processor Script Generator

Script Files

Figure 3.1 The NPSNET-0OASIS System

11

the other. The integration of the scripting tools, provides animators the required

mechanisms to record and playback scripts.

1. Script Processor

Hidden from the user, all functions of the script processor are accessed from the
NPSNET-OASIS system. Functions include reading script objects and assigning script files
to process. There is only one script file active in the script processor at any given instance.
However, multiple processors are allowed. On end of file, the script processor can be
assigned another script file from the NPSNET-OASIS system. '

The script processor returns a script result after each read. Scrip. results are based on
valid script statements or errors 1cading the script file. File errors are treated as .rnd of
scripts or invalil script files. When an error occurs for a script statement, a message is
displayed on the standard output devire indicating type of erros. followed by line nucaber
and name of current script file (Figure 3.2). Messages provide users a tool for debugging

scripts. Description of script results and script errors are contained in Appendix A.

Line Number Name of Script File Type of Error

Figure 3.2 Error Message

Script statements are read in line for line by the script processor. When blank lines are
encountered, the script processor ignores them, and continues to read the script file.
Beginning with the symbol ‘/*’ script comments are continuous script lines containing
information about script events or script options. The script processor treats each line a< a

comment until the termination symbo) ‘*/ is reached. The user must be careful in using

12

script comments. A script comment with no termination symbol will include valid script
events until end of file. Script lines containing script events or script options are valid only
when both procedural operators and the required arguments are valid. The number of
arguments for each procedural operator are fixed Thus, incomplete or extra arguments will
make the script line invalid. In addition, incompicie format of a required argument will

preempt an error message by the script processor.

2. Script Generator

The script generator’s yrimary purpose is to write script objects to an output file in
NPSNET-CAS:S script format. Error checking does not exist since script objects contain
default values for all values not assigned in even.s. All script files generated from the script
generator are valid files for script processing. When several script files exist, a library can
be created by including several script files into or.e script. There are no specified maximum

number of lines per script file. The only limitation is the space available on disk.

3. System Timekeeper

As timestamps are processed for each script event, the system timekeeper adjusts them
for simulator interaction. Timestamps for each script event are assumed relative to the start
time of the input script file. When absolute, timestamps are relative to the start time of
NPSNET-OASIS system. The timekeeper uses the system clock of the graphics
workstations for all assignments of start times. Times received from system clocks are
based on total seconds and total microseconds since January 1, 1¢70 [Ref. 7].

There are two types of clock references - system and user. The difference between the
two, is that system clock reference is actual system time, and user clock reference is the
time selected by the user in seconds and microseconds. When selected in user clock
reference, the user has the option to change the start time for the NPSNET-OASIS systen:.
When changed, the timekeeper adjusts the new start time with the system clock. In addiiion,

the start times for the input script file and output script file are also changed to the same

start time as the NPSNET-OASIS system. When writing script files, timestamps are always
reference to the start time of the output script file.
In Figures 3.3 and 3.4, timestamp adjus;tmems are illustrated for system clock

reference and user clock reference. The timestamp is converted to total seconds and total

System Start Time - : "
00:00:00 Sept 1, 1991 Timestamp in Relative

Total Secs Usecs

Timestamp of 10:01:05.5
Teto! Sees | Usees | 4-

;I‘gtal Secs | Usecs

0
665 500000 683697600 | 50004 683698266

: Input Script Start Ti
Timestamp of 10:00:05.5] | "B Stoe S 200 [Timestamp in Absolute

Total Secs | Usecs |4 Total Secs | Usecs Total Secs | Usecs

7
665 500000 683697610 | 100000 683698275 | 600000

Figure 3.3 Illustration of Timestamp Adjustment Based on System Clock

Timestamp of 10:01:05.5 System Start Time Timestamp in Relative
Total Secs | Usecs |4 | Total Secs | Usecs Total Secs | Usecs

665 500000 0 0 665 500000

Timestamp of 10:01:05.5 Input Script Start Tim Timestamp in Absolute
Total Secs | Usecs || Total Secs | Usecs Total Secs | Usecs

665 500000 9 600000 675 100000

Figure 3.4 Illustration of Timestamp Adjustment Based on User Clock

14

microseconds. The total seconds and microseconds are used for timestamp adjustments
based on either relative or absolute time reference. In relative time reference with the
system clock, the timestamp is added to the start time of the input script file. In absolute
time reference, the timestamp is added to the start time of the NPSNET-OASIS system. The

same procedure is also applied to the user clock reference.

- B. STRUCTURE OF SCRIPT EVENTS

Each script event has a 3D icon identification, a position, a timestamp and attributes
to describe a task-level behavior event. Users of NPSNET-OASIS must be familiar with

the data structures and the information contained in them.

1. 3D Icon Identification

3D icon identifications include an object number, a host number, an object description,
and an object status. Object numbers are four digit values assigned to 3D icons by the visual
simulator to distinguish from other 3D icons. Host numbers are three digit values used in
identifying visual simulators in a network. When combined, a host number and an object
number provide an unique identification number to a 3D icon (Figure 3.5). Object
descriptions are descriptive names of 3D icons. NPSNET requires them for associating
OFF files for visual display. Supplementing world state information, object status is a

description of the current state on a 3D icon.

5011234

Figure 3.5 The 3D Icon Identification Number

2. Event Position ’

Positions for a script event include grid coordinates and an elevation. Elevation,
represented in meters, is the altitude of an arez above sea level. The primary military grid
reference system in the United States, the Universal Transverse Mercator (UTM), is a
world wide plane coordinate system based on the metric standard [Ref. 4]. The grid
coordinate system of UTM is adopted in NPSNET-OASIS (Figure 3.6). Each UTM grid
zone is a square area of six degrees in longitude by eight degrees in latitude. UTM
coordinates are designated by two or three characters. The last character, in alphabetic
notation, represents the latitude cffset, and the beginning characters, in numeric notation,
represents the longitudc offset. To further identify locations in each UTM grid zone, the
U.S. Army created the MGRS [Ref. 4]. MGRS subdivides UTM grid zones into 100,000
meter square areas designated by two letters. To complete the MGRS grid, UTM easting
and northing are used to designate which square meter area. Coordinates are in even digits
where the first half representing easting, and the second half, northing. Precision in UTM
coordinates requires five digits for easting and northing. In NPSNET-OASIS, easting and
northing coordinates with digits less than five, are appended with additional zeros (Figure
3.7).

7%A -D$N - 12%45 12?i45

Gridzone MGRS Easting Northing

Figure 3.6 UTM Coordinate Position

16

Appended Zeros

79A-DN -12300 12300

i Y Y Y
Gridzone MGRS Easting Northing

Figure 3.7 UTM Coordinate Position With Padded Zeros

3. Timestamp

Timestamps are based upon the 24-hour clock metaphor where times are represented
as strings [Ref. 1]. Each field of the timestamp string is represented by numeric characters
with leading zeros being optional. In Figures 3.8a-c, hours, minutes, and seconds of the
timestamp string are interpreted from right to left. Microseconds are interpreted from left
to right (Figure 3.8). Used in event scheduling, timestamps indicate when to execute the
event. In time delays, timestamps indicate the time durations of the script pauses, or the
time to begin reading scripts. In Figure 3.8, timestamps are listed in formats acceptable to
NPSNET-OASIS.

4. Event Attributes

Representing properties of continuous and transient events, attributes provide
additional information on script events. Attributes enable a 3D icon to be unique among
other 3D icons in simulation. Information such as headings and velocities of 3D icons are
affected by state changes of continuous events. Appearances of 3D icons are affected by
state changes of transient events. An example of a transient event is an explosion of a 3D

icon. The attributes for this event require the description type and the bounding area of the

explosion. See Appendix I for description of event attributes.

10:32:11.527501
bty '

Hours Minutes Seconds Microseconds

43:22.230492
e e dens
33.540823

Seconds Microseconds

254?04

Microceconds

Script options, or directives, are used in script files for file operations, script system

Figure 3.8 Timestamp Formats

C. SCRIPT OPTIONS

defaults, and assigning values for timestamp adjustments. From Figure 2.6, the script is
modified to include all the script options available to NPSNET-OASIS (Figures 3.9 and
3.10). Syntax for each script option is listed in Appendix A.

1. Script_Abort

Normal termination of NPSNET-OASIS requires all statements in the input script file

to be processed. However, the animator has the option to terminate the script by inserting

18

[ERRRRRRRRRRARRRARARARRRARRRRRRRRRNRARRRRKARRRRRCRRR AR ARk kAR Rk A RhRR

Description: Sample script of two M-1 tanks ‘script.ml’
Host Id Numbex: 501

Simulator: NPSNET on IRIS VGX Workstation

Authozx: Phillip Wes!

******i*****************************t*******************************/

/* Assign timestamp reference relative to start time of input script */
SCRIPT TIMESTAMP ralative

/* Assign default UTM gridzone and MGRS */
SCRIPT_LOCATION 118-DN

/* Assign time factor ¢f 50 percent for all timestamps */
SCRIPT_TIME_FACTOR 0.5

/* Assign time adjustment value of 10 seconds for all timastamps */
SCRIPT TIME_ADJUSTMENT 10.0

/* Activate clouds with vaelocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010500 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two M-l tanks */

VEHICLE ACTIVATE 5010001 M1 090.0 40.0 344955 0.0 40.0
VEHICLE ACTIVATE 5010002 ML 090.0 40.0 345958 0.0 45.0
/* Change headings of M-1 tanks */

VEHICLE HEADING 5010001 135.0 344801 0.0 2:0.0
VEHICLE_HEADING 5010002 120.0 344803 0.0 2:5.0

/* Change velocities of M-1 tanks */

VEHICLE SPEED 5010001 5.0 344670 0.0 6:0.0
VEHICLE_SPEED 5010001 5.0 344677 0.0 7:25.0

/* M~1 tanks passing by a building */

OBJECT_ACTIVATE 5010004 Building 344701 0.0 8:10.0

OBJECT DEACTIVATE 5010004 9:40.0

/* Script message for advance warning of upcoming script evants */
SCRIPT MESSAGE Activating column of jeeps

/* Script call for column of jaeps */
SCRIPT_CALL script-2.ml

/* Continue script with next script file */
SCRIPT CHAIN script-1.ml

Figure 3.9 Sample Script With Script Options

19

/*t*t***i****t***t*********i**

Description: Sample script of two M-1 tanks ‘script-l1.ml’
Host Id Number: 501 .

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

AARRRKRARARRRRRAARE AR AR RRERIERRRARARRRRERT AR RRRRARARARARRRRR Rk RA K/

/* M-1 tanks passing by a palm tree */

OBJECT_ACTIVATE 5010003 PalmTrae 345700 0.0 22:0.0
OBJECT_DEACTIVATE 5010003 22:35.0

/* Change velocities of M-1 tanks */

VEHICLE SPEED 5010001 5.0 345670 0.0 26:0.0
VEHICLE_ SPEED 5010001 5.0 345677 0.0 27:25.0

/* Deactivate M 1 tanks */

VEHICLE DEACTIVATE 5010001 29:45.0

VEHICLE DEARCTIVATE 5010002 29:50.0

/* Deactivate clouds */
ENVIROMN’I‘_ACTIVATE 5010500 30:0.0

/* Script delay for duration of 5 minutes prior to termination */
SCRIPT_DELAY 5:0.0 absolute

/* Write to output script file message for next script processing */
SCRIPT FILE WRITE SCRIPT_MESSAGE End of Script

/* Terminate script */
SCRIPT_ABORT

/**********i******t*******i***

Dascription: Sample script of multiple jeeps ‘script-2.ml’
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

**/

/* Activate jeep vehicle */
VEHICLE ACTIVATE 5010010 Jeep 090.0 40.0 345678 0.0 10:0.0

/* Rapeat script for 10 iterations with total 11 separate vehicles */
SCRIPT_REPEAT 10 1 1:0.0

Figure 3.10 Sample Script With Script Options

20

SCRIPT_ABORT. This script directive has no arguments. When encountered, all script
files are closed, and a script result of END_OF_SCRIPT is returned to the system.

2. Script_Call

The directive SCRIPT_CALL is a subscript call, similar to a procedure call in a high-
level programming language. The argument for this directive is a string containing the
script file name. The calling script file is suspended during processing of the subscript and

control returns on subscript’s end of file. This directive supports modular scripting in
NPSNET-OASIS.

3. Script_Chain

Linking of one input script file to another requires the script directive
SCRIPT_CHAIN. The required argument is a string containing the script file name. After
the chained script file is successfully opened, the other script file is closed. This directive

is useful for combining small script files into one large script.

4. Script_Repeat

Similar to a counter-controlled loop, the script directive SCRIPT_REPEAT allows
scripts to be processed repeatedly. There are three arguments for SCRIPT_REPEAT -
iterations, object number adjustment, and timestamp adjustment. Iterations are values for
the number of times repeating the same script. Object number adjustment is the increment/
decrement value for all 3D icon identification numbers. Similar to the script option
SCRIPT_TIME_ADJUSTMENT, timestamp adjustment is the increment/decrement of
timestamps for each repeated script event. All script events in script chains and script calls
are affected by SCRIPT_REPEAT. This directive is useful for repeating the entire script,

or repeating a short series of script events.

5. Script_Timestamp
SCRIPT_TIMESTAMP, with the selected string as argument, is used to change time

reference in script processing. The default time reference for NPSNET-OASIS system is

21

“relative”. The other option is “absolute”.Relative time reference is for all timestamp
adjustments based on input script start time. Absolute time reference is for all timestamp

adjustments based on system start time.

6. Script_Time_Adjustment

Changing event timestamps throughout the script requires
SCRIPT_TIME_ADJUSTMENT to be inserted prior to selected statements. An argument
in timestamp format, is used for adding to event timestamps. To stop timestamp
adjustments, requires another SCRIPT_TIME_ADJUSTMENT and an argument of zero.

7. Script_Time_Factor

Another option for adjusting timestamp, is the use of SCRIPT_TIME_FACTOR.
With a floating-type numeric argument, SCRIPT_TIME_FACTOR, provides the time
factor percentage for each event timestamp, This option is useful for incrementing or
decrementing speed of script processing. For example, the value of 2.0 causes two seconds

of script time to be four seconds of wall clock time.

8. Script_Delay
There are two arguments required for SCRIPT_DELAY - timestamp and delay type.

Delay type is either “absolute” or “relative”. In absolute mode, the current script is
suspended until the time specified by the timestamp. In relative mode, the current script is

suspended for the time duration specified by the timestamp.

9. Script_Location

Upon initialization, the NPSNET-OASIS system assigns the default UTM gridzone
and MGRS with strings “10S” and “DN” respectfully. Defaults will be assigned when an
UTM gridzone and/or MGRS are not included in the event position. Replacing one or both
system defaults requires SCRIPT_LOCATION to be used in the script.

22

10. Script_File_Write
Script objects recorded to an output script file include script events and script
comments. There are no script options or blank lines. SCRIPT_FILE_WRITE provides

animators the capability to include any type of script statements in a recorded script. If there

is no output script file, then an error message is displayed.

11. Script_Message

While developing software, programmers include statements in their source code for
tracing and debugging. In NPSNET-OASIS, animators have the same capability by
allowing script messages to be displayed on a standard output device. Messages can include
any text desired by the animator. One suggestion is to use script messages prior to selected
script events. Messages with information on upcoming events provide advanced warning

of what to expect in visual simulation.

23

IV. IMPLEMENTATION OF NPSNET-OASIS

A. OVERVIEW

The current NPSNET system runs across the entire Silicon Graphics, Inc. (SGI) IRIS
4D line [Ref, 10]. NPSNET-OASIS was developed with no graphics function calls, thus
allowing application on various types of platforms including non-graphics workstations.
Networking allows the different platforms to interact on other workstations in the
Graphics and Video Laboratory.

For autonomous vehicle control, the network hamess process of NPSNET enables
NPSNET-OASIS to provide scripted autonomous players in visual simulation [Ref. 10].
The network harness uses Ethernet TCP/IP multicast packets designed for the NPSNET
system. The purpose of this process is to listen to the packets broadcast on the network and
to build an internal model of the state of the world from those packets. Script events from
NPSNET-OASIS are transformed to message packets and broadcasted via the network

harness. In addition, packets received are transformed and recorded to an output script.

B. DATA STRUCTURES

The data s':uctures required for the script event and message packet transformations
are contained in Appendices I through K. Currently in NPSNET, only vehicle script
events are used for autonomous vehicle control. As further development of NPSNET

continues, other script events are integrated to allow enhanced modeling of the world.

C. NPSNET-OASIS NETWORK INTERFACE
As shown in Figure 4.1, NPSNET-OASIS is integrated into NPSNET by coupling
with the NPSNET-OASIS network interface. The network interface provides the

¢ NETWORK

I

Network
Daemon

!

Network
Interface

!

Network
Daemon

<a—p| TimeKeeper

P.-S(f{é&tor

Script
Generator

S Pl

Figure 4.1 NPSNET-OASIS Network Interface

synchronization in playbacks and recordings of NPSNET-OASIS scripts.

required data structures, transformations of all script event message packets are processed

in the network interface.

1. Internal Data Structures

Several NPSNET-OASIS network interfaces can interact with NPSNET with each
containing its own internal data structures for representing the state of the world. Referred

to as the local state of the world, the data structure contains all locations and vehicle types

25

for NPSNET-OASIS. Additionaliy, another internal data structure is used for indicating
which vehicle icons are recorded on script. Eirst time script events of vehicle icons
require the script event VEHICLE_ACTIVATE to be recorded on script. Playback of
scripts requires VEHICLE_ACTIVATE to set the vehicle attribute alive for the vehicle
icon to be active in NPSNET. The network interface updates the local data structures prior

to each message broadcast and prior to recording on script.

2. Message Packets

Currently there is only one type of message packet used in NPSNET for scripted
autonomous players - vehicle update. Each vehicle script event is processed as a vehicle
update regardless of event type. The encoding of the message packet is described in
Appendix K.

There are three types of message packets received from the network - stop script,
time synchronization, and vehicle update. Stop script message enables the NPSNET-
OASIS network interface to detach from the network. Time synchronization message
assigns the initial start time of NPSNET. NPSNET-OASIS sets all start times of script
files and script system to the time specified in the message. Vehicle update message is

used to update the local state of the world and to record the script event.

3. Operation of Network Interface

Referring to Figure 4.2, the NPSNET-OASIS network interface is operational until
end of input script file or a stop script message packet. If the network interface was
initialized with no input script file, then a stop script message is required. Prior to reading
script events, the network is checked for incoming message packets. When message
packets exist, the local state of the world is updated and the transformed script events are

recorded. All script events from the input script file are transformed to message packets

26

and sent to the network. System time for NPSNET-OASIS is based on the user clock

reference.

27

void MonitorNpsnetNetwork() {

AddProcessToNetwork();

SetSystemStartTime(StartTicks / HZ, StartTicks % HZ);

while(ActiveNetworkInterface) {
CarrentTicks = (times(&SysTimes) - StartTicks);
ReceiveAndProcessMessages();
if(InputScriptExists && ActiveNetworkInterface) {

ReadAndProcessScriptEvent(CurrentTicks, VehicleArray);

switch(GetScriptResult()) {
case END_OF_SCRIPT:
InputScriptExists = FALSE;
if(!OutputScriptExists)
ActiveNetworkInterface = FALSE;
break;
case SCRIPT_VALID:
WriteScriptMessage(GetIconID(), GetEventID());
SendUpdateMessage(GetlconID());
break;
case SCRIPT_ERROR:
case SCRIPT_IN_DELAY:
case NO_SCRIPT_EVENT:
default:
break;
} // end switch

} // endif
} // endloop
DetachProcessFromNetwork();

// end MonitorNpsnetNetwork

Figure 4.2 Network Interface Monitor Routine

28

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSION

The NPSNET-OASIS system has fulfilled the initial requirement of providing tools to
record and playback scripts. The NPSNET-OASIS network interface provides users of
NPSNET the capability to generate scripted autonomous players in visual simulations.
The study in applying object-oriented methodologies in a practical design such as
NPSNET-OASIS was beneficial for extensibility and reusability of existing source code.
This was proven when the network interface for NPSNET-OASIS was built on top of a
script system. As new software developments evolve in the Graphics and Video

Laboratory, changes can be made in NPSNET-OASIS with little modifications.

B. LIMITATIONS

There are two limitations in NPSNET-OASIS. First, using the classes of NPSNET-
OASIS requires C++ throughout software development. Existing software in the Graphics
and Video Laboratory such as NPSNET must be converted to C++ in order to fully
integrate NPSNET-OASIS in code. The second limitation is that NPSNET is currently
unable to use all the script events in NPSNET-OASIS. The data structures for NPSNET
are limited in containing the information for all types of continuous and transient events.
In addition, the capabilities for transient events such as collisions and explosions are still
under development. Current design of the NPSNET-OASIS network interface permits only

continuous events of vehicle icons, such as vehicle heading and velocity changes.

C. FUTURE DIRECTIONS

Current implementations of NPSNET-OASIS are in executable load modules with no
graphics functions. Execution of load module requires typing the module name at the

command prompt. There are no output displays other than error messages generated during

29

processing and recording of scripts. Future effort could be placed on developing some
interactive tool for using the script tools of NPSNET-OASIS, such as a graphics script
editor or a syntax directed editor.

The NPSNET-OASIS network interface is implemented only for the SGI IRIS
graphics workstations. Porting the software to other platforms should be an easy matter.
Suggestion is to modify the source code of NPSNET-OASIS for providing scripted

autonomous players from a different platform.

30

APPENDIX A
NPSNET-OASIS Script Events, Results, and Errors

Note: Back slashes '\’ in syntax or examples indicate continuation on the same line.

Vehicle Events
VEHRICLE ACTIVATE
VEHICLE_ACTIVATE <vehicle number> <type description> <heading> \
<velocity> <UTM coordinates> <elevation> \
<timestamp>

Description - New vehicle icon activated for visual simulation.

Example- VEHICLE ACTIVATE 200 M1 235.0 5.0 1234567890 0.0 5:0.0

VEHICLE_DEACTIVATE

VEHICLE DEACTIVATE <vehicle number> <timestamp>

Description - Vehicle icon deactivated from visual simulation.

Example- VEHICLE DEACTIVATE 200 5:0.0

VEHICLE MODIFICATION

VEHICLE_MODIFICATION <vehicle number> <component name> \
<rotation X direction> \
<rotation Y direction> <rotation Z direction> \
<translation X direction>
<translation Y direction> \
<translation Z direction> <UTM coordinates> \
<elevation> <timestamp>

Description - Vehicle icon is modified by changing the degrees of freedom on one of it’s

components.

31

Example- VEHICLE MODIFICATION 200 turret 10.0 10.0 10.0 25.0 25.0\
25.0 1234567890 0.0 5:0.0

VEHICLE_PITCH

VEHICLE _PITCH <vehicle n..wer> <pitch angle> <UTM coordinates>\
<elevation> <timestamp>

Description - Pitch angle of vehicle icon is changed. Negative values indicated downward N

angle and positive values indicate upward angle.

Example- VEHICLE PITCH 200 10.0 1234567890 0.0 5:0.0

VEHICLE_ROLL

VEHICLE_ROLL <vehicle number> <roll angle> <roll direction> \
<UTM coordinates> <elevation> <timestamp>

Description - Roll angle of vzhicle icon is changed. The direction of the roll is either

*stbd’, ’port’, or "'none’. Direction 'none’ indicates a roll angle of 0.0.

Examples - VEHICLE ROLL 200 10.0 stbd 1234567890 0.0 5:0.0
VEHICLE_ROLL 260 10.0 port 1234567890 0.0 5:0.0
VEHICLE_ROLL 200 0.0 none 1234567890 0.0 5:0.0

VEHICLE_POSITION

VEHICLE_POSITION <vehicle number> <UTM coordinates> <elevation> |\
<timestamp>

Description - The position of vehicle icon is updated.
Examples - VEHICLE_POSITION 200 79A-DN-1234567890 0.6 5:0.0

VEHICLE_POSITION 200 79A-1234567890 0.0 5:0.0
VEHICLE_POSITION 200 DN-12345678%90 0.0 5:0.0

2

VERICLE HEADING

VEHICLE HEADING <vehicle number> <heading> <UTM coordinates> \
<elevation> <timestamp>

Description - The heading of vehicle icon is changed. All headings are from 0.0 to 359.9
degrees relative to North. For NPSNET, degrees are required to be in radians.

Example- VEHICLE HEADING 200 270.0 79A-DN-1234567890 0.0 5:0.0

VEHICLE_SPEED

VEHICLE_SPEED <vehicle number> <velocity> <UTM coordinates> \
<elevation> <timestamp>

Description - The velocity of vehicle icon is changed. All velocities are in kilometers per
hour.

Example- VEHICLE_SPEED 200 10.0 79A-DN-1234567890 0.0 5:0.0

VEBICLE_TRAIL

VEHICLE_TRAIL <vehicle number> <trail description> \
<bound area X direction> \
<bound area Y direction>\
<bound area Y direction> <offset X direction> \
<offset Y direction> <offset Z direction> \
<UIM coordinates> <elevation> <timestamp>

Description - The trail of vehicle icon is activated for visual simulation. Trails such as dust

or wake requires attributes for bounding area for size and vehicle offset.

Example- VEHICLE TRAIL 200 mediumdust 10,0 10.010.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE_COLLISION

VEHICLE _COLLISION <vehicle number> <description result> \
<UTM coordinates> <elevation> <timestamp>

"

Description - This event is a transient event indicating vehicle icon collision with another

icon.

Example- VEHICLE COLLISION200destroyed 79A-DN-12345678300.05:0.0

VEHICLE_EXPLOSION

VEHICLE_EXPLOSION <vehicle number> <explosion description> |\
<bound area X direction> \
<bound area Y direction> \
<bound area Y direction> <UTM coordinates> \
<elevation> <timestamp>

Description - This event is a transient event of a vehicle icon explosion. Attributes
required are explosion type and bounding area for explosion.

Example- VEHICLE _EXPLOSION 200 largescale 10.0 10.0 10.0 1234567890\
0.0 5:0.0

VEHICLE_FLAMING

VEHICLE_FLAMING <vehicle number> <description of fire> \
<bound area X direction> \
<bound area Y direction>\
<bound area Y direction> <offset X direction> \
<offset Y direction> <offset Z direction> \
<UTM coordinates> <elevation> <timestamp>

Description - This event is a transient event of a vehicle icon on fire, Attributes required

are type of flames, bounding area of the flames, and the vehicle offset to the flames.

Example- VEHICLE FLAMING 200 mediumflame 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE_SMDKING

VEHICLE_SMOKING <vehicle number> <description of smoke> \
<bound area X direction> \
<bound area Y direction> \
<bound area Y direction> <offset X diresction> \
<offset Y direction> <offset 2 direction> \
<UTM coordinates> <elevation> <timestamp>

34

Description - This event is a transient event of a vehicle icon emitting smoke. Attributes

required are smoke type, bounding area of the smoke, and the vehicle offset to the smoke.

Example- VEHICLE SMOKING 200 mediumsmoke 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

VEHICLE DESTROYED

VEHICLE_ DESTROYED <vehicle number> <UTM coordinates> <elevation> \
<timestamp>

Description - Not removed from visual simulation, the vehicle icon is destroyed.

Example- VEHICLE DESTROYED 1234567890 0.0 5:0.0

VEHICLE_FUEL

VEHICLE FUEL <vehicle number> <fuel amount> <timestamp>
Description - The fuel state is changed on a vehicle icon. Amount of fuel left in vehicle
icon is indicated in liters.

Example- VEHICLE FUEL 200 10.0 5:0.0

VEHICLE_AMMUNITION

VEHICLE AMMUNITION <vehicle number> <weapon name> <weapon rounds> \
<timestamp>

Description - The ammunition state is changed on a vehicle icon. Weapon rounds of
weapon name indicate current number assigned to the vehicle icon.

Example- VEHICLE AMMUNITION 200 turret 10 5:0.0

VEHICLE_UPDATE

VEHICLE UPDATE <vehicle number> <vehicle status> <heading> \
<velocity> <pitch angle> <roll angle> \
<roll direction> <UTM coordinates> <elevation> \
<timestamp>

35

Description - Update status on a vehicle icon.

Examples - VEHICLE UPDATE 200 inmotion 260.0 10.0.0 0.0 none 456789\
0.0 5:0.0

VEHICLE_STATUS_QUERY

VEHICLE_STATUS_QUERY <vehicle number> <timestamp>

Description - This event queries status of a selected vehicle icon.

Example- VEHICLE STATUS QUERY 200 5:0.0

WEAPON_LAUNCH

WEAPON_LAUNCH <weapon number> <source id> <description>\
<heading> <heading type> <velocity> \
<pitch angle> <UTM coordinates> <elevation> \
<timestamp>

Description - Weapon is launch from a source vehicle icon with initial velocity and
headings. Headings are indicated in relative 'R’ or absolute ’A’.
Examples - WEAPON_LAUNCH 300 200 sm-2 260.0 A 500.9 45.0 456789 3.0\

5:0.0
WEAPON_LAUNCH 300 200 sm-2 260.0 R 500.9 45.0 456789 3.0\
5:0.0

WEAPON_IMPACT

WEAPON_IMPACT <weapon number> <source id> <UTM coordinates>\

<elevation> <timestamp>
Description - Weapon impact terminating weapon icon.

Example- weapoN_IMPACT 300 200 456789 3.0 5:0.0

36

WEAPON_EXPLOSION

WEAPON EXPLOSION <weapon number> <source id> <UTM coordinates> \
<elevation> <timestamp>

Description - Weapon explosion terminating weapon icon,

Example- WEAPON _EXPLOSION 300 200 456789 3.0 5:0.0

WEAPON_UPDATE

WEAPON_UPDATE <weapon number> <source id> <weapon status> \
<heading> <heading type> <velocity> \
<pitch angle> <UTM coordinates> <elevation> \
<timestamp>

Description - Update status on a weapon icon.
Examples - WEAPON UPDATE 300 200 active 260.0 A 300.0 35.0 456789 3.0 5:0.0

WEAPON_UPDATE 300 200 active 260.0 R 300.0 35.0 456789 3.0 5:0.0

WEAPON_STATUS_QUERY
WEAPON_STATUS_QUERY <weapon number> <source id> <timestamp>

Description - This event queries status of a selected weapon icon.

Examples- WEAPON STATUS_QUERY 300 200 5:0.0

OBJECT_ACTIVATE

OBJECT_ACTIVATE <object number> <object description> \
<UTM coordinates> <elevation> <timestamp>

Description - New miscellaneous object icon activated for visual simulation.

Example- OBJECT ACTIVATE 250 building 1234567850 5:0.0

37

OBJECT DEACTIVATE
OBJECT DEACTIVATE <object number> <timestamp>

Description - Miscellaneous object icon deactivated from visual simulation.

Example- 0BUECT DEACTIVATE 250 5:0.0

OBJECT_COLLISON

OBJECT_COLLISION <object number> <description result>\
<UTM coordinates> <elevation> <timestamp>

Description -This event is a transient event indicating miscellanious object icon collision with

another icon.

Example- 0BJECT COLLISION 250 destroyed 79A-DN-1234567890 0.0 5:0.0

OBJECT_EXPLOSION

OBJECT_EXPLOSION <object number> <explosion description> \
<bound area X direction> \
<bound area Y direction> \
<bound area Y direction> <UTM coordinates> \
<elevation> <timestamp>

Description - This event is a transient event of a miscellaneous object icon explosion.
Attributes required are explosion type and bounding area for explosion.

Example - 0BJECT EXPLOSION 250 largescale 10.0 10.0 10.0 12345678 0.0 5:0.0

OBJECT_FLAMING

OBJECT_FLAMING <object number> <description of fire> \
<bound area X direction> |\
<bound area Y direction> \
<bound area Y direction> <offset X direction> \
<offset Y direction> <offset 2 direction> \
<UTM coordinates> <elevation> <timestamp>

Description - This event is a transient event of a miscellaneous object icon in flames.
Attributes required are flame type, bounding area of the smoke, and the object offset of the
flames.

Example- 0BJUECT FLAMING 250 largescale 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

OBJECT_SMOKING

OBJECT_SMOKING <object number> <description of smocke> \
<bound area X direction> \
<bound area Y direction> |\
<bound area Y direction> <offset X direction> \
<offset Y direction> <offset Z direction> \
<UTM coordinates> <elevation> <timestamp>

Description - This event is a transient event of a miscellaneous object icon emitting smoke.

Attributes required are smoke type, bounding area of the smoke, and the object offset of the
smoke.

Example- 0BJECT SMOKING 250 mediumsmoke 10.0 10.0 10.0 0.0 0.0 0.0\
1234567890 0.0 5:0.0

OBJECT_UPDATE

OBJECT _UPDATE <object number> <object status> \
<UTM coordinates> <elevation> <timestamp>

Description - This event queries status of a selected miscellaneous object icon.

Examples - OBJECT_UPDATE 250 active 1234567890 0.0 5:0.0

OBJECT_STATUS_QUERY
OBJECT_STATUS QUERY <object number> <timestamp>

Description - This event queries status of a selected miscellenous object icon.

Example- 0OBJECT STATUS_QUERY 250 5:0.0

Environment Events

ENVIFKMG!ENEL}M:TTiﬁer
ENVIRONMENT ACTIVATE <environment object number> <type description> \
<heading> <velocity> <UTM coordinates> |\

<elevation> <timestamp>

Description - New environment effect icon is activated for visual simulation.

Example- ENVIRONMENT ACTIVATE 400 cloud 345.0 5.0 1234567890 5:0.0

ENVIRONMENT DEACTIVATE
ENVIRONMENT DEACTIVATE <environment object number> <timestamp>

Description - Environment effect icon of vehicle number is deactivated from visual
simulation.

Example- ENVIRONMENT DEACTIVATE 400 5:0.0

Serint Optior

SCRIPT_ABORT

SCRIPT ABORT

Description - Normal termination of NPSNET-OASIS requires all statements in the input
script file to be processed. However, the animator has the option to terminate the script by
inserting SCRIPT_ABORT. This script directive has no arguments. When encountered, all
script files are closed, and a script result of END_OF_SCRIPT is returned to the system.

Example - SCRIPT ABORT

SCRIPT_CALL
SCRIPT_CALL <filename for script call>

Description - The directive SCRIPT_CALL is a subscript call, similar to a procedure call

40

in a high-level programming language. The argument for this directive is a string
containing the script file name. The calling script file is suspended during processing of the
subscript. Only one script is processed at any given tin:2. Script file control retumns to the
caller on subscript’s end of file. This directive supports modular scripting in NPSNET- A
OASIS.

Example - SCRIPT CALL script-1.ml

SCRIPT_CHAIN

SCRIPT_CHAIN <filename for script chaining>

Description - Linking of one input script file to another requires the script directive
SCRIPT_CHAIN. The required argument is a st:ig containing the script file name. After
the chained script file is successfully opened, the other script file is closed. This directive
is useful for combining small script files into one large script.

Example - SCRIPT CHAIN script-1.ml

SCRIPT_REPEAT

SCRIPT_REPEAT <iterations> <object number adjustment> \
<time adjustment>

Similar to a counter-controlled loop, the script directive SCRIPT_REPEAT allows scripts
to be processed repeatedly. There are three arguments for SCRIPT_REPEAT - iterations,
object number adjustment, and timestamp adjustment. Iterations are values for the number
of times repeating the same script. Object number adjustment is the increment/decrement
value for all 3D icon identification numbers. Similar to the script option
SCRIPT_TIME_ADJUSTMENT, timestamp adjustment is the increment/decrement of
timestamps for each repeated script event. All script events in script chains and script calls
are affected by SCRIPT_REPEAT. This directive is useful for repeating the entire script,

or repeating a short series of script events.

41

Example - SCRIPT REPEAT 10 1 2:0.0

SCRIPT_LOCATION

SCRIPT LOCATION <new default UTM gridzone and/or MGRS>

Description - Upon initialization, the NPSNET-OASIS system assigns the default UTM gridzone
and MGRS with strings “10S” and “DN” respectfully. Defaults will be assigned when an UTM
gridzone and/or MGRS are not included in the event position. Replacing one or both system
defaults, requires SCRIPT_LOCATION to be used in the script.

Examples - SCRIPT_LOCATION 79A-DN

SCRIPT_LOCATION 79A

SCRIPT_LOCATION DN

SCRIPT_TIMESTAMP

SCRIPT TIMESTAMP <time reference for script timestamps>

Description - The default time reference for NPSNET-OASIS system is “relative”. The other
option is “absolute”. SCRIPT_TIMESTAMP, with the selected string as argument, is used to
change time reference in script processing. Relative time reference is for all timestamp adjustments
based on input script start time. Absolute time reference is for all timestamp adjusiments based on
system start time.

Examples - SCRIPT TIMESTAMP relative

SCRIPT TIMESTAMP absolute

SCRIPT_TIME FACTOR

SCRIPT TIME_FACTOR <time factor value>

Description - Another option for adjusting timestamp, is the use of SCRIPT_TIME_FACTOR.
With a floating-type numeric argument, SCRIPT_TIME_FACTOR, provides the time factor

percentage for each event timestamp. This option is useful for incrementing or decrementing speed

of script processing.

42

Example - SCRIPT_TIME FACTOR 0.5

SCRIPT_TIME ADJUSTMENT

SCRIPT_TIME ADJUSTMENT <timesta“p>

Description - Changing event timestamps throughout the script requires
SCRIPT_TIME_ADJUSTMENT to be inserted prior to selected statements. An argument in
timestamp format, is used for adding to event timestamps. To stop timestamp adjustments, requires

another SCRIPT_TIME_ADJUSTMENT and an argument of zero.

Example- SCRIPT TIME ADJUSTMENT 10:0.5

SCRIPT_DELAY

SCRIPT DELAY <timestamp> <type of script delay>

Description - There are two arguments required for SCRIPT_DELAY - timestamp and delay type.
Delay type is cither “absolute” or “relative™. In absolute, the current script is suspended until the

time specified by the timestamp. In relative, the current script is suspended for the time duration

specified by the timestamp.

Examples - SCRIPT DELAY 10:0.0 relative

SCRIPT DELAY 25:24.0 absolute

SCRIPT_FILE WRITE

SCRIPT FILE WRITE <script line>

Description - Script objects recorded to an output script file include script events and script
comments. There are no script options or blank lines. SCRIPT_FILE_WRITE provides animators
the capability to include any type of script statements in a recorded scrip:. If there is no output script
file, then an error message is displayed.

Example - SCRIPT_FILE WRITE SCRIPT MESSAGE end of script

43

SCRIPT MESSAGE
SCRIPT _MESSAGE <message>

Description - While developing software, programmers include statements in their source code for
tracing and debugging. In NPSNET-OASIS, animators have the same capability by allowing script
messages to be displayed on a standard output device. Messages can include any text desired by
the animator. One suggestion is to use script messages prior to selected script events. Messages
with information on upcoming events provide advanced warning of what to expect in visual
simulation.

Example- SCRIPT MESSAGE End Of Script

SCRIPT_ ERROR

SCRIPT_ERROR is returned from NPSNET-OASIS when an input/output file error occurred or a
script statement is invalid. File errors occur if unable to open or close a file. Invalid script .
statements include invalid syntax for script comments, invalid procedural operators, invalid
arguments for a procedural operator, and invalid formats for arguments.

END_OF SCRIPT

On end of script, which includes processing of all input script files, a result of END_OF_SCRIPT
is returned.

SCRIPT_IN_DELAY

SCRIPT_IN_DELAY is returned when processing of script files are suspended.

SCRIPT VALID
For a result of SCRIPT_VALID, script statements are of valid syntax.

NO_SCRIPT EVENT

An option for classes built on top of NPSNET-OASIS, NO_SCRIPT_EVENT is returned when’
script processing is suspended or a script event is not ready for retum. Used in the NPSNET-
OASIS network interface, NO_SCRIPT_EVENT is returned when the script event is not ready for

multicast.

NPSNET-OASIS can only have one main input script file assigned. If another is assigned then the
following is displayed:

SCRIPT ERROR: Only one main script permitted to be open.

The following message is displayed if the main script file does not exist. Possible errors can
include file does not exist, or some characters of the file name are of upper case.

SCRIPT ERROR: Unable to open main script file ’filename’.

When NPSNET-OASIS is unable to close a script file a message is displayed.

SCRIPT ERROR: Unable to close 'filename'.

There are error messages for invalid file opens for script chaining or script call. In addition, another
line is displayed informing the line number and file name of the script file containing the script
option. Messages are as follows:

SCRIPT ERROR: Unable to open script ‘filename’ for chaining.

SCRIPT ERROR: Unable to open script ‘filename’ for script call.

Script events to be recorded require an output script file. If the file does not exist, then the
following error message is displayed:

SCRIPT ERROR: No output file opened for script generation.

For recording scripts, the following message is displayed if a procedural operator of a script event
does not exist.

SCRIPT ERROR: Invalid event for script generation.

If the script statement is not a script comment or a valid script procedural operator, then the
following message is displayed:

SCRIPT ERRCR: Invalid OASIS Procedural Operator.

For a valid script comment, the start symbol '/*" and the termination symbol "*/" must exist. In
addition, no nesting of comments are permitted. When the termination symbol is encountered by
the script processor, the rest of the script line is checked for invalid characters. Messages are as
follows:
SCRIPT ERROR: Invalid characters after script comment end symbol.
SCRIPT ERROR: Encountered another script comment beginning.

SCRIPT ERROR: Script comment with no end symbol.

When script statements contain valid procedural operator, chances are that required arguments are
missing, some arguments are of invalid format, or too many arguments. If this should happen, then
an error message is displayed followed by another line containing line number and name of input
script file. There is a separate error message for each procedural operator. Messages are as
follows:

SCRIPT ERROR: Invalid parameters for environment_activate.

SCRIPT ERROR: Invalid parameters for environment deactivate.

SCRIPT ERROR: Invalid parameters for vehicle activate.

SCRIPT ERROR: Invalid parameters for vehicle deactivate.

SCRIPT ERROR: Invalid parameters for vehicle modification.

SCRIPT ERROR: Invalid parameters for vehicle pitch.

SCRIPT ERRCR: Invalid parameters for vehicle roll.

SCRIPT ERROR: Inva'ld parameters for vehicle position.

SCRIPT ERROR: Invalid parameters for vehicle heading.

SCRIPT ERROR: Invalid parameters for vehicle speec.

SCRIPT ERROR: Invalid parameters for vehicle trail.

SCRIPT ERROR: Invalid parameters for vehicle collision.

47

SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT
SCRIPT

SCRIPT

ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:
ERROR:

ERROR:

Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters
Invalid parameters

Invalid parameters

48

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

for

vehicle _explosion.
vehicle_flaming.
vehicle smoking.
vehicle_destroyed.
vehicle_ fuel.
vehicle ammunition.
vehicle_update.
vehicle status_query.
object_activate.
object_deactivate.
object_collision.
object_explosion.
object_flaming.
object_smoking.
object_update.
object_status_query.
script_time_ factor.
script_time_adjustment.
script_delay.
script_abort,
script_call.
script_chain.
script_repeat.
script_timestamp.
script location.
weapon_launch,
weapon_impact,
weapon_explosion.
weapon_update.

weapon_status_query.

APPENDIX B
NPSNET-OASIS Sample Scripts

/***

File: script.ml

Description: Sample script of two M-l tanks in motion
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

**/

/* Assign timestamp reference relative to start time of input script */
SCRIPT_TIMESTAMP relative

/* Assign default UTM gridzone and MGRS */
SCRIPT_LOCATION 11S-DN

/* Assign time factor of 50 percent for all timestamps */
SCRIPT_TIME_FACTOR 0.5

/* Assign time adjustment value of 10 seconds for all timestamps */
SCRIPT_TIME_ADJUSTMENT 10.0

/* Activate clouds with velocity 5.0 km/h, heading 270.0 west */
ENVIRONMENT ACTIVATE 5010500 Cloud 270.0 5.0 34536783 1000.0 30.0

/* Activate two M-1 tanks */
VEHICLE_ACTIVATE 5010001 M1 090.0 40.0 344955 0.0 40.0
VEHICLE_ACTIVATE 5010002 M1 090.0 40.0 345958 0.0 45.0

/* Change headings of M-1 tanks */

VEHICLE_HEADING 5010001 135.0 344801 0.0 2:0.0
VEHICLE HEADING 5010002 120.0 344803 0.0 2:5.0
/* Change velocities of M-1 tanks */

VEHICLE_SPEED 5010001 5.0 344670 0.0 6:0.0
VEHICLE_SPEED 5010001 5.0 344677 0.0 7:25.0

/* M-1 tanks passing by a building */

OBJECT_ACTIVATE 5010004 Building 344701 0 8:10.0

OBJECT_DEACTIVATE 5010004 9:40.0

/* Script message for advance warning of upcoming script events */
SCRIPT MESSAGE Activating column of jeeps

/* Script call for column of jeeps */
SCRIPT_CALL script-2.jeeps

49

/* Continue script with next script file */
SCRIPT_CHAIN script-l.ml

/*************************i***

File: script-1.ml

Description: Sample script of two M-1 tanks in motion
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

**/

/* M-1 tanks passing by a palm tree */
OBJECT_ACTIVATE 5010003 PalmTree 345700 0 22:0.0
OBJECT_DEACTIVATE 5010003 22:35.0

/* Change velocities of M-l tanks */

VEHICLE_SPEED 5010001 5.0 345670 0.0 26:9.0
VEHICLE_SPEED 5010001 5.0 345677 0.0 27:25.0
/* Deactivate M 1 tanks */

VEHICLE_DEACTIVATE 5010001 29:45.0
VEHICLE_DEACTIVATE 5010002 29:50.0

/* Deactivate column of jeeps */
SCRIPT_CALL script-3. jeeps

/* Continue script with another scenario */
SCRIPT_CALL script-4.£14

/* Deactivate clouds */
ENVIRONMENT DEACTIVATE 5010500 45:0.0

/* Script delay for duration of 2 minutes prior to termination */
SCRIPT_DELAY 2:0.0 absolute

/* Write to output script file message for next script processing */
SCRIPT_FILE WRITE SCRIPT_MESSAGE End of Script

/* script message for end of script */
SCRIPT_MESSAGE *** DEMO COMPLETE ***

/* Terminate script */
SCRIPT_ABORT

50

/***

File: script-2. jeeps

Description: Sample script of activating multiple jeeps
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

**/

/* Activate jeep vehicle */
VEHICLE_ACTIVATE 5010010 Jeep 090.0 40.0 345678 0.0 10:0.0

/* Repeat script for 10 iterations with total 11 separate vehicles */
SCRIPT REPEAT 10 1 1:0.0

/*t** AAAKKKRKAKKAKXXARAAKRAX KR A K

File: script-3. jeeps

Description: Sample script of deactivating multiple jeeps
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip West

**/

/* Deactivate jeep vehicle */
VERICLE_DEACTIVATE 5010010 29:0.0

/* Repeat script for 10 iterations with total 11 deactivate jeeps */
SCRIPT_REPEAT 10 1 1.0

51

/*** '

File: script-4.£14

Description: Sample of a script of a flying aircraft
Host Id Number: 501

Simulator: NPSNET on IRIS VGX Workstation

Author: Phillip wWest

i***/

/* BActivate F-14 aircraft in flight status */
VEHICLE_ACTIVATE 5010110 F14 090.0 540.0 345678 1000.0 30:0.0

/* Rircraft roll to port 10 degrees */
VEHICLE_ROLL 5010110 10.0 port 344677 1000.0 31:10.0

/* Aircraft level roll to 0 degrees */
VEHICLE_ROLL 5010110 0.0 none 344676 996.7 34:56.5

/* Sea sparrow launch from F-14 */
WEAPON_LAUNCH 5010210 5010110 seasparrow 240.0 R 400.0 -10.0\
344675 995.6 36:0.0

/* Weapon impact on surface */
WEAPON_IMPACT 5010210 5010110 342670 0.0 38:43.5

/* Weapon exploded on surface */
WEAPON_EXPLOSION 5010210 5010110 342670 0.0 39:0.0

/* Deactivate F-14 */
VEHICLE_DEACTIVATE 5010110 43:0.0

52

//
1/
//
//
» //
//
//
- /7
//
/1

APPENDIX C
Class Definition of ScriptProcessor

Classtype: ScriptProcessor

Derived from: VehicleProcessor, WeaponProcessor,
MiscObjectProcessor, EnvironmentProcessor,
ScriptOptionProcessor

Base for: OasisSystem

Remarks: This class provides the mechanism to read script
files and process script events for valid script
objects and comments.

class ScriptProcessor : private VehicleProcessor,

private WeaponProcessor,
private MiscObjectProcessor,
private EnvironmentProcessor,
private ScriptOptionProcessor (

public:
ScriptProcessor(); // Constructor
~ScriptProcessor(); // Destructor

// Member functions for ScriptProcessor
long ReadScriptObject (ScriptObject& Script):
// Reads next script object from input script file and
// returns null if error occurs.
SourceScriptFile* GetScriptFile():
// Returns reference pointer of current input script file.
void SetScriptFile(SourceScriptFile* Scriptfile);
// Assigns current script file for script processing.
void SetUtmScriptDefaults(char *Gridzone, char *Mgrs);
// Assigns default gridzones and mgrs for event positions.
ScriptProcessor* Instance():
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.

protected:

SourceScriptFile* CurrentScriptFile;
// Current input script file.

private:

long SetupScriptline(char *Line);
// Removes excess blank spaces and converts uppercase
// characters to lower case. Returns SCRIPT_COMMENT
// if script line is the beginning of a comment block.
long ScanForBlankLines{char *Line);
// Returns null for non-blank lines.

53

long DetermineEvent (ScriptObject& Script, char* Line);

// Determines procedural operator for script object, and
// calls group processor for procedural operator. Returns
// null if script error occurs.

}: // end class ScriptProcessor

54

APPENDIX D
Class Definition of ScriptGenerator

//
// Classtype: ScriptGenerator
// Derived from: OasisSystemObject
// Base for: OasisSystem
N // Remarks: This class provides the mechanism in writing script
// files.
// =
- class ScriptGenerator : public OasisSystemObject {
public:
ScriptGenerator(); // Constructor.
~ScriptGeneratcx(); // Destructor.

// Member functions for ScriptGenerator

long OpenOutputFile (char *Name):;
// Opens output script file and returns TRUE for successful
// file open.

long WriteScriptObject (ScriptObject& Script):;
// Writes script object to script file and returns TRUE for
// successful file write.

long WriteScriptline(char *Line):
// Writes script object to script file and returns TRUE for
// successful file write.

long CloseOutputFile():
// Closes output script file and returns result of file
// close.

ScriptGenerator* Instance();
// Returns reference pointer of instance.

virtual char *ClassName();

// Returns class identification string.
protected:

DestinationScriptFile OutFile;
// Current destination script file.
private:
void WriteVehicleEvent (VehicleEvent& Vehicle):

// Writes script object of vehicle event to output script
// file.

void WriteWeaponEvent (WeaponEvent& Weapon);

// Writes script object of weapon event to output script
// file.
void WriteMiscObiectEvent (MiscObiectEvent& MiscObiject):
// Writes script object of miscellaneous object event to
// output script file.
void WriteEnvironmentEvent (EnvironmentEvent& Environment);

// Writes script object of environment event to output
// script file.

35

void WriteComment (ScriptComment& Comment);
// Writes script comment block to output script file.
}; // end class ScriptGenerator

56

APPENDIX E
Class Definition of TimeKeeper

!/
// Classtype: TimeKeeper
// Derived from: OasisSystemObject
// Base for: QOasisSystem
// Remarks: This class provides the functions to keep track of
// time, and convert to and from script object
// timestamps.
//
class TimeKeeper : public OasisSystemObject {
public:
TimeKeeper () ; // Constructor
TimeKeeper (Long Reference); // Constructor
~TimeKeeper () ; // Destructor
// Member functions for TimeKeeper
long GetClockReference ()
// Returns clock reference of timekeeper.
void SetClockReference(long Reference):;
// Assigns clock reference of timekeeper.
void StartSystemTime () ;
// Saves time of system start.
void StartInputScriptTime():
// Saves time of start for input script.
void StartOutputScriptTime();
// Saves time of start for output script.
void SetSystemStartTime (long Seconds, long Microseconds);
// Assigns system start time.
void SetInputScriptStartTime (long Seconds, long Microseconds):
// Assigns start time for input script file.
void SetOutputScriptStartTime (long Seconds, long Microseconds):
// Assigns start time for output script file.
void CurrentSystemTimestamp(ScriptEvent& Event);
// Rssigns timestamp of script object to current system
// time (Absolute or Relative). .
void ScriptToSystemTimestamp (ScriptEvent& Event,long Reference):
// Modifys timestamp of script object to reflect time
// reference to system time.
void SystemToScriptTimestamp(ScriptEvent& Event,long Reference):
// Assigns timestamp of script object to reflect reference
// to start of system time or start of input script file,
void SetScriptDelay (ScriptEvent& Delay, long Reference):
// Assigns time to disable script delay based on type of
// delay. BAbsolute delay is based on system start time.
// Relative is based on duration of delay.
long ActiveScriptDelay():

// Returns TRUE if script delay is still active.

37

TimeKeeper* Instance():;
// Returns reference pointer of instance.
virtual char *ClassName():;
// Returns class identification string.
private:
long ClockReference;
// Time reference for time keeper.
TimeValue System_ Starttime;
// Start time of system.
TimeValue InputScript_Starttime;
// Start time of input script.
TimeValue OutputScript_Starttime;
// Start time of output script.
TimeValue End_Of_DelayTime;
// Time to release script delay.
void ConvertToTimestamp (TimeValue *time, ScriptEventé& Event);
// Converts system time to script object timestamp.
}i // end class TimeKeeper

58

/1
1/
/1
/1
/!
//
/1
//

APPENDIX F
Class Definition of OasisSystem

Classtype: OasisSystem

Derived from: TimeKeeper, ScriptProcessor, ScriptGenerator

Base for: OasisScriptSorter, QOasisScriptPreprocessor
Remarks: This class provides the mechanism for reading and

writing script files. All script options are
processed internally.

class QasisSystem : private TimeKeeper,

public:
OasisSystem(): // constructor
OasisSystem(long ClockReference);// constructor (use SYSTEM_ CLOCK

private ScriptProcessor,
private ScriptGenerator {

// for reference in system time
// access, or use USER_CLOCK for
// time provide by the user.

~OasisSystem(); // destructor
// Menmber functions for OasisSystem

long

long

long

long

long

long

double

void

OpenlnputScriptFile (char *Name):

// Opens script file for input. Returns TRUE for successful
// file open.

OpenOutputScriptFile (char *Name);

// Opens script file for output. Returns TRUE for

// successful file open.

GetScriptObject (ScriptObject& Script);

// Requires ScriptObject as argument for script event 1/0.
// The script object is returned with result of either -
// SCRIPT_ERROR, SCRIPT_VALID, END_OF_SCRIPT,

// SCRIPT_IN_DELAY, or NO_SCRIPT_ EVENT,

PutScriptObject (ScriptObject& Script):;

// Writes script object to output script file and returns
// TRUE for successful file write.

CloselnputScriptFile();

// Closes input script file and returns result of TRUE for
// successful file close.

CloseQutputScriptFile();

// Closes input script file and returns result of TRUE for
// successful file close.

GetTimeFactor();

// Returns time factor for computing timestamps for all

// secript objects.

SetTimeFactor (double Factor);

// Assigns time factor for computing timestamps for all

// script objects.

59

void

void

SetSystemStartTime (long Seconds, long Microseconds):

// Only used in USER_CLOCK time reference, the system

// starttime is altered to match total seconds and

// microseconds. Start times for input and output script
// files will be the same for system start times.
DisableScriptMessagesAndDelays();

// sets flag for no script messages to be displayed and
// no script delays to be activated

OasisSystem* Instance();

// returns reference pointer of instance.

virtual char *ClassName();

protected:

// returns class identification string.

SourceScriptFile *CurrentlInputFile;

private:
long

long
long
double
double

long

void

long

long

long

long

// Reference to current input scriptfile

EndOfInputScript;

// Boolean flag for end of script file.

DelayActive;

// Boolean flag for active script delay.
MessagesAndDelays;

// Initially TRUE allowing script messages and delays
TimeAdjustment;

// Amount of time to adjust script timestamps.
TimeFactor;

// Time factor fcr each computed timestamp.
TimeReference;

// Time reference for determining type of timestamp for
// script object. ABSOLUTE_TIME for assigning timestamps
// relative to system start time. RELATIVE_TIME for

// assigning timestamps relative to input script start

// time,

ModifyScriptObject (ScriptEvent§ Event);

// Modifys script object in computing timestamps according
// to time reference time adjustmenc, and time factor.
ProcessScriptCption({ScriptOpticn& Option);

// Process script option for OASIS. Returns either

// SCRIPT_VALID or END_OF_SCRIPT.

DelayScript (ScriptOptioné Option);

// RAssigns script delay based on type of reference in time
// delay. If absolute, delay is aborted when system time
// matches time of delay. If relative, time of delay is
// added to time of receiving script object for reference.
ChainScript (ScriptQOption& Option);

// Closes current script file and opens another. Returns
// null if error occurs.

CallScript (ScriptOption& Option);

// Calls script file as a subroutine and returns back to
// calling script file. Returns null if error occurs

// during file open.

, long RepeatScript (ScriptOption& Option);
// Repeats current script file for number of iterations.
}: // end class OasisSystem

61

APPENDIX G
Class Definition of OasisScriptSorter

//
// Classtype: OasisScriptSorter
// Derived from: OasisSystem
// Base for: none
// Remarks: This class provides the mechanism to sort script
// objects of source script files and writes back to a
// destination script file. The gsort function of
// ANSI C is used for sorting.
// = =
class OasisScriptSorter : private JasisSystem |{
public:
OasisScriptSorter(): // Constructor
~0asisScriptSorter(); // Destructor

// Member functions for OasisScriptSorter
long PerformSort{char *Source, char *Destination);
// Performs sort of source script file and generates sorted
// script to a destination script file. Source and
// Destination can be the same file name,
OasisScriptSorter* Instance():
// Returns reference pointer of instance.
virtual char *ClassName():
// Returns class identification string.

private:

}:

long ReadScriptFile{char *Source);
// Reads script file into sort array and returns TRUE for
// valid script file or FALSE for invalid script file.
long WriteScriptFile{char *Destination):
// Writes script objects from sort array to destination
// script file. Returns TRUE if valid script write.
long NumberOfEntries;
// Returns number of script objects in sort array.
ScriptSource *Script;
// Array for sorting script objects.
void CreateSortArray();
// Creates sorting array.
void DestroySortArray();
// Destroys sorting array.
double GetTimestamp(ScriptObject& Source):;
// Returns timestamp in total seconds and microseconds from
// script object.
double PreviousTimestamp;
// Timestamp of previous script object.
long PreviousObjectWasAComment;
// Boolean flag for previous script object.

// end OasisScriptSorter

62

APPENDIX H
Class Definition of OasisScriptPreprocessor

// = o
// Classtype: OasisScriptPreprocessor
// Derived from: OasisSystem
// Base for: none
'y // Remarks: This class provides a mechanism to check source
// scrxipt files errors prior to use,
[/== = = =
4 class QasisScriptPreprocessor : private OasisSystem {
public:
OasisScriptPreprocessor(); // Constructor
~DasisScriptPreprocessor(); // Destructor

// Member functions for OasisScriptPreprocessor

long PerformErrorChecking{char *Source);
// Reads script file and displays to standard output device
// of all errors in script file,

OasisScriptPreprocessor* Instance();
// Returns reference pointer of instance.

virtual char *ClassName();
// Returns class identification string.

}: // end QasisScriptPreprocessor

63

APPENDIX 1
Class Definitions of Script Events and Attributes

//
// Classtype: ObjectHeading
// Derived from: BEventAttribute
// Base for: VehicleEvent, WeaponEvent, EnvironmentEvent
// Remarks: This class provides functions for object headings
// in degrees.
// == =
class ObjectHeading : public EventAttribute {
public:
ObjectHeading() ; // Constructor
~ObjectHeading () // Destructor

// Member functions for ObjectHeading
void SetHeading(float Value);

// Bssigns object heading in degrees.
float GetHeading();

// Returns object heading in degrees.
void SetHeadingType(char Type);

// Assigns heading type.
char GetHeadingType():

// Returns heading type as a string (absolute or relative),
ObjectHeading* Instancel():;

// Returns reference pointer of instance.
virtual char *ClassName();

// Returns class identification string.

private:

float Heading;
// Heading of object in degrees.
char HeadingType;
// Beading in Relative direction 'z’
// or Absolute direction ’a’

}: // end class ObjectHeading:

// = . =
// Classtype: ObjectVelocity
// Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent, EnvironmentEvent
// Remarks: This class provides functions for object velocity
// in kilometers per hour.
// = :
class ObjectVelocity : public EventAttribute {
public:
ObjectVelocity(); // Constructor
~ObjectVelocity(); // Destructor

// Member functions for ObjectVelocity
float GetVelocity():
// Returns object velocity in km/h.
void SetVelocity(float Value);
// Assigns object velocity in km/h.
ObjectVelocity* Instance():;
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.
private:
float Velocity:
// Velocity of object in kilometers per hour.
}: // end class ObjectVelocity:;

// Classtype: ObjectPitchAngle
// Derived from: EventAttribute

// Base for: VehicleEvent, WeaponEvent

// Remarks: This class provides the functions for object pitch

// angle in degrees.)

//= == i ==

class ObjectPitchAngle : public EventAttribute {

public:
ObjectPitchaAngle(): // Constructor
~ObjectPitchAngle(); // Destructor

// Member functions for ObjectPitchAngle
float GetPitchAngle();
// Returns object pitch angle in degrees.
void SetPitchAngle(float Angle):
// Assigns obiject pitch angle in degrees.
ObjectPitchAngle* Instance():
// Returns reference pointer of instance,
virtual char *ClassName():
// returns class identification string.
private:
float Pitchangle;
// Object’s pitch angle in degrees.
}: // end class ObjectPitchangle;

// =
// Classtype: ObjectRoll
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object roll.
// === =
class ObjectRoll : public EventAttribute {
public:
ObjectRoll () ; // Constructor

~ObjectRoll () ; // Destructov

65

// Member functions for ObjectRoll
float GetRollAngle();
// Returns roll angle in degrees.
void SetRollAngle(float Angle):
// Assigns roll angle in degrees,
char *GetRollDirection():
// Returns roll direction of either "port" or "stbd"
void SetRollDirection(char *Direction);
// Assigns roll direction,
ObjectRoll* Instance();
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.
private:
float Rollangle;
// Roll angle of object (in degrees)
char *RollDirection;
// Direction of pitch (port or stbd)
}: // end class ObjectRoll;

/1 = =
// Classtype: ObjectComponent
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object component.
// All movements of object component are represented
// by the six degrees of freedom for translation and
// rotation.
/[m==== = = =
class ObjectComponent : public EventAttribute ({
public:

ObjectComponent () ; // Constructor

~ObjectComponent () ; // Destructor

// Member functions for ObjectComponent
char *GetComponentName ();
// Returns name of object component.
void SetComponentName (char *Name);
// Assigns name to object component.
float GetComponentRotation(long Axis);
// Returns component rotation in the requested axis.
void SetComponentRotation(float Xval, float ¥Yval, float Zval);
// Assigns component rotation in the ¥, ¥, and Z axis.
float GetComponentTranslation(long Axis);
// Returns component translation in the requested axis.
void SetComponentTranslation{float Xval, float Yval,float 2Zval);
// Assigns component translation in the X, Y, and Z axis.
ObjectComponent* Instance();
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.

66

private:

char *ComponentName;

// Component name of object.
float ComponentRotation([XYZ]:;

// Degrees of freedom in rotation.
float ComponentTranslation[XYZz):

// Degrees of freedom in translation.

}; // end class ObjectComponent;

// = _
// Classtype: ObjectWeapon
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object weapons,
!/ Usually components on vehicles,
//= == ===
class ObjectWeapon : public EventAttribute {
public:
ObjectWeapon () ; // Constructor
~0ObjectWeapon () ; // Destructor

// Member functions for ObjectWeapon
long GetWeaponRounds():

// Returns number of rounds in weapon.
void SetWeaponRounds (long Rounds):

// Assigns number of rounds to weapon.
char *GetWeaponName();

// Return name of weapon.
void SetWeaponName (char *Name):

// BAssigns name of weapon.
ObjectWeapon* Instance():;

// Returns reference pointer of instance,.
virtual char *ClassName();

// Returns class identification string.

private:

c¢har *WeaponName;
// Weapon component name.
long WeaponRounds;
// Number of rounds in Weapon.

}; // end class ObjectWeapon

67

// Classtype: ObjectExplosion

// Derived from: EventAttribute

// Base for: VehicleEvent, WeaponEvent, MiscObjectEvent

// Remarks: This class provides functions for object explosions

// = == :

class ObjectExplosion : public EventAttribute {

public:
ObjectExplosion(); // Constructor
~ObjectExplosion(); // Destructor

// Member functions for ObjectExplosion
char *GetExplosionDescription():;
// Returns description of explosion.
void SetExplosionDescription(char *Description):;
// Assign description of object explosion.
float GetExplosionBoundArea({long Axis);
// Return coordinate of explosion bound area along
// requested axis.
void SetExplosionBoundArea (float Xval, float Yval, float Zval):
// Assign X, Y, and Z coordinates of explosion bound area.
ObjectExplosion* Instance();
// Returns reference pointer of instance,
virtual char *ClassName():;
// Returns class identification string.
private:
char *ExplosionDescription;
// Descriptive type of explosion.
float ExplosionBoundArea[XY2];
// Maximum area bound in X, Y, Z coordinates.
}: // end class ObjectExplosion;

// = = = =
// Classtype: ObjectFireAndSmoke
// Derived from: EventAttribute
// Base for: VehicleEvent, WeaponEvent, MiscObjectEvent
// Remarks: This class provides functions for all object fire
/7 and smoke events.
// = : ===
class ObjectFireAndSmoke : public EventAttribute |{
public:
ObjectFireAndSmoke(); // Constructor

~ObjectFireAndSmoke () ; // Destructor
// Member functions for ObjectFireAndSmoke
char *GetFireAndSmokeDescription():;
// Returns descriptive type of smoke or fire.
void SetFireAndSmokeDescription{char *Description);
// Assigns descriptive type of smoke or fire on object.
float GetFireAndSmokeBoundArea(long Axis):
// Returns coordinate of requested axis of maximum bound
// area of smoke or fire,

68

void

float

void

SetFireAndSmokeBoundArea (float Xval,float Yval,float 2Zval);
// Assigns coordinates of X, ¥, and 2 axis maximum bound
// area of smoke or fire.

GetFireAndSmokeOffset (long Axis);

// Returns coordinate of requested axis of smoke or fire

// offset on object.

SetFireAndSmokeOffset (float Xval, float Yval, float 2Zval):
// RAssigns coordinates of X, Y, and 2 axis smoke or fire

// offset on object.

ObjectFireAndSmoke* Instance():;

// Returns reference pointer of instance.

virtual char *ClassName();

private:
char

float

float

// Returns class identification string.

*FireAndSmokeDescription;

// Descriptive type of smoke or flame on object.
FireAndSmokeBoundArea[XY2Z};

// maximum area bound in X, Y, and Z coordinates.
FireAndSmokeOffset [XYZ];

// Offset coordinates on object.

}: // end class ObjectFireAndSmoke;

//
// Classtype: ObjectTrail
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object trails.
//
class ObjectTrail : public EventAttribute {
public:
ObjectTrail(): // Constructor
~ObjectTrail (); // Destructor

// Member functions for ObjectTrail

char

void

float

void

tloat

void

ObjectTrail* Instance():

*GetTrailDescription();

// Returns description of object trail.
SetTrailDescription{char *Description);

// Assigns description to object trail.
GetTrailBoundArea(long Axis):)

// Returns coordinate of trail bound area along request

// axis.

SetTrailBoundArea(float Xval, float Yval, float 2Zval):

// Assigns maximum bound area coordinates for X, ¥, and 2.
GetTrailOffset (long Axis);

// Returns coordinate of trail offset along request axis.
SetTrailOffset (float Xval, float Yval, float 2Zval); |
// Assigns object coordinates in X, ¥, and 2 for trail
// offset.

// Returns reference pointer of instance.

69

virtual char *ClassName():
// Returns class identification string.
private:
char *TrailDescription;
// Descriptive type of object trail.
float TrailBoundArea[XY2]):
// Maximum area bound of trail.
float TrailOffset[XYZ];
// Offset position on object.
}: // end class ObjectTrail;

//
// Classtype: ObjectFuel
// Derived from: EventAttribute
// Base for: VehicleEvent
// Remarks: This class provides functions for object fuel.
// Fuel is represented in Liters.
//e=s====ssoczazssszssorssssssSasssoonsSSESSSoRCSSSSSSSSoSoSssatooonos
class ObjectFuel : public EventAttribute ({
public:

ObjectFuel (); // Constructor

~ObjectFuel () ; // Destructor

// Member functions for ObjectFuel
float GetFuel():;
// Returns amount of fuel in liters.
void SetFuel (float Value);
// Assigns amount of fuel in liters.
ObjectFuel* Instance():
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.
private:
float Fuel;
// Fuel state of Object (liters).
}: ¢/ end class ObjectFuel;

/7
// Classtype: EventObject
// Derived from: OasisEventObject
// Base for: VehicleEvent, WeaponEvent, MiscObjectEvent,
// EnvironmentEvent
// Remarks: This class provides functions for all event objects
//
class EventObject : public OasisEventObject {
public:
EventObject () ; // Constructor
~EventObject () ; // Destructor

70

// Member functions for OasisEventObject

long

long
long
void
long
void
char
void
char

void

ConvertIdFromLongInteger {long Id):;

// Converts a number to host and object identification
// numbers.

ConvertlIdToLonginteger():

// Returns number representing host and object id numbers.
GetHostNumber () ;

// Returns host number of object.
SetHostNumber (long Number) ;

// Assigns host number for object.
GetObjectNumber () ;

// Returns object identification number of object.
SetObjectNumber (long Number);

// Assigns object identification number to object.
*GetObjectDescription();

// Returns object description.
SetObjectDescription(char *Descriptionj;

// Assigns description to object.
*GetObjectStatus();

// Returns descriptive status of object.
SetObjectStatus (char *Status):

// Assigns descriptive status of object.

EventObject* Instance();

// Returns reference pointer of instance.

virtual char *ClassName():

private:

}:

long
long
char

char

// returns class identification string.

ObjectHostNumber;

// Host identification number of object.
ObjectNumber;

// Object identification number.
*ObjectDescription;

// Description type of object.
*ObjectStatus;

// Descriptive status of object.

// end EventObject

!/

// Classtype: WeaponSource

// Derived from: EventAttribute

// Base for: WeaponEvent

// Remarks: This class provides functions for weapon souxce.

// s

class WeaponSource : private EventAttribute {

public:
Weaponinurce(); // Constructor
~WeaponSource(}: // Destructor

71

// Member functions for WeaponSource
EventObject& GetWeaponSource();

// Returns source object of weapon.
void SetWeaponSource (EventObject& Source);

// Assigns source obje~t of weapon.
WeaponSource* Instance():

// Returns reference pointer of instance.
virtual char *ClassName();

// Returns class identification string.

private:

EventObject SourceOfWeapon;

// Source object assocated with weapon.
}# // end class WeaponSource

// ====
// Classtype: TimeStamp
// Derived from: OasisEventObject
// Base for: ScriptEvent
// Remarks: This class provides functions for all timestamps.
//
class TimeStamp : public QasisEventObject (
public:
TimeStamp () ; // Constructor
~TimeStamp(); // Destructor

// Member functions for TimeStamp
void SetHours(long Value);
// Assigns hours in timestamp.
long GetHours():
// Returns hours in timestamp.
void SetMinutes(long Value);
// Assigns minutes in timestamp.
long GetMinutes();
// Returns minutes in timestamp.
void SetSeconds(long Value):;
// Assigns seconds in timestamp.
long GetSeconds();
// Returns seconds in timestamp.
void SetMicroseconds (long Value);
// Bssigns microseconds in timestamp.
long GetMicroseconds();
// Returns microseconds in timestamp.
long StringToTimestamp(char *Timestring):
// Converts timestamp string to hours, minutes, seconds,
// and microseconds.
char *TimestampToString():
// Returns timestamp as a strinqg.
TimeStamp* Instance();
// Returns referenc: pointer of instance.
virtual char *ClassName();
// Returns class identification string.

72

private:
long Hours;
// Timestamp hours.
long Minutes:
// Timestamp minutes.
long Seconds;
// Timestamp seconds.
long Microseconds;
// Timestamp microseconds.
char 2TimeString;
// Timestamp in string format.
}: // end class TimeStamp

//
// Classtype: EventPosition
// Derived from: OasisEventObject
// Base for: ScriptEvent
// Remarks: This class provides functions for UTM coordinates
// and elerations.
/7
class EventPosition : public OasisEventObject {
public:
EventPosition(); // Constructor
~EventPosition(); // Destructor

// Member functions for EventPosition
void SetGridzone {char *NewGridzone};
// Assigns gridzone of UTM position
char *GetGridzone();
// Returns gridzone of UTM coordinates.
void SetMgrs (char *NewMgrs);
// Assigns MGRS of UTM coordinates.
char *GetMgrs():;
// Returns MGRS of UTM coordinates.
void SetNorthing({long Value);
// hAssigns Northing of UTM coordinates.
long GetNorthing{):
// Returns Northing of UTM coordinates.
void SetEasting(long Value);
// Assigns Easting of UTM coordinates.
long GetEasting():
¢ // Returns Easting of UTM coordinates.
void SetElevation(float Value);
// Assigns elevation.
. float SetElevation{):;
// Returns elevation.
long StringToUtmPosition(char *Position, char *defaultGZ,
char *defaultMGRS):
// Extracts UTM cooxdinates from Position, and returns null
// if error occurs. Default gridzone and mgrs are required
// for UTM defaults.

long StringToMap(char *map_strg, char *defaultGz,
char *defaultMGRS):
// Extracts default UTM gridzone and/or Mgrs, and returns
// null if error occurs.
char *UtafPositicnToString():
// Returns UTM coordinates as a string.
EventPosition* Instance();
// Returns reference pointer of instance.
virtual char *ClassName(}:;

// Returns class identification string.
private:

char *Gridzone;

// grid zone of UTM coordinate system
char *Mgrs;

// mgrs of UTM coordinate system
long Northing;

// northing offset of grid zone
long Easting;

/7 easting offset of grid zone
float Elevation;

// altitude
char *PositionString;

// UTM coordinates in string format

}; // end class EventPosition;

//
// Classtype: ScriptEvent

// Derived from: EventObject, EventPosition, EventAttribute,
// TimeStamp

// Base for: VehicleEvent, WeaponEvent, MiscObjectEvent,
// EnvironmentEvent, ScriptComm:nt, ScriptOption
// Remarks: This class is the base for all script events. Each
/7 script event must have an object, place, and time.
[[/==m====== = ====
class ScriptEvent : public EventObject, public EventPosition,
private EventAttribute, public TimeStamp {

public:

ScriptEvent (): // Constructor

~ScriptEvent. () ; // Destructor

// Member functicns for ScriptEvent
long GetEventTypel();
// Returns type of script event.
void SetEventType(long Type):
// Assigns type of script event.
char *GetEventResult();
// Returns descriptive result of event.
void SetEventResult (char *Result):
// Assigns descriptive result of event.

74

ScriptEvent* Instance():

// Returns reference pointer to instance.
virtual char *ClassName():
// Returns class identification string.

private:

long EventTrpe;
// Type of script event.
char *EventResult;
// Description result of event.

}; // end class ScriptEvent

//
// Classtype: VehicleEvent
// Derived from: ScriptEvent, ObjectHe 1iny, ObjectVelocity,
// ObjectPitchAngle, ObjectRoli, ObjectComponent,
// ObjectWeapon, ObjectExplosion, ObjectFireaAndSmoke,
/7 ObjectTrail, ObjectFuel
// Base for: ScriptOL . 2t
// Remarks: This class is for all vehicle events.
//
class VehicleEvent : public ScriptEvent, public ObjectHeading,
public ObjectVelocity, public ObjectFuel,
public ObjectPitchAngle, public ObjectRoll,
public ObjectComponent, public ObjectWeapon,
public ObjectFireAndSmoke, public ObjectTrail,
public ObjectExplosion {
public:
VehicleEvent () ; // Constructor
~VehicleEvent () ; // Destructor

}:

// Member functions for VehicleEvent
VehicleEvent* Instance():

// Returns reference pointer of instance
virtual char *ClassName():

// Returns class identification string.

// end class VehicleEvent

//

// Classtype: WeaponEvent

// Derived from: ScriptEvent, WeaponSource, ObjectHeading,

1/ ObjectPitchAngle,

// ObjectVelocity, ObjectExplosion

// Base for: ScriptObject

// Remarks: This class is for all Weapon events.

/7 ==

class WeaponEvent : public ScriptEvent, public WeaponSource,

public ObjectHeading, public ObjectPitchAngle,
public ObjectVelocity, public ObjectExplosion {

75

public: ’
WeaponEvent () ; // Constructor
~WeaponEkvent () ; // Destructor
// Member functions for WeaponEvent
WeaponEvent* Instance();

// Returns reference pointer of instance.
virtual char *ClassName();

// Returns class identification string.
}; // end class WeaponEvent

//= ==

// Classtype: MiscObjectEvent

// Derived from: ScriptEvent, ObjectFireAndS.oke, ObjectExplosion

// Base for: ScriptObject

// Remarks: This class is for all miscellaneous object events.

//

class MiscObjectEvent : public ScriptEvent, public ObjectFireAndSmoke,
public ObjectExplosion {

public:
MiscObjectEvent () ; // Constructor
~MiscObjectEvent () ; // Destructor

// Member functions for MiscObjectEvent
MiscObjectEvent* Instance();
// Returns reference pointer of instance.
virtual char *ClassName();
// Returns class identification string.
}; // end class MiscObjectEvent

//==mexzzsmcme—=cmzcmmes—ozssss=ssmcsass==sms=s=ss=nossss=soooEszoSoEss
// Classtype: EnvironmentEvent

// Derived from: ScriptEvent, ObjectHeading, ObjectVelocity

// Base for: ScriptObject

// Remarks: This class provides is for all environment events.
//

class EnvironmentEvent : public ScriptEvent, public ObjectHeading,
public ObjectVelocity {

public:
EnvironmentEvent () ; // Constructor
~EnvironmentEvent {); // Destructor

// Member functions for EnvironmentEvent
EnvironmentEvent* Instance():

// Returns reference pointer of instance,.
virtual char *ClassName();

// Returns class identification string.
}: // end class EnvironmentEvent

76

/1=

// Classtype: ScriptComment

// Derived from: ScriptEvent

// Base for: ScriptObiject

// Remarks: This class provides functions for script comments.
//

class ScriptComment : public¢ ScriptEvent ({
// Data structure for each comment line
typedef struct CommentPointer {
char *Line; // Pointer to comment line.
struct CommentPointer *Next; // Pointer to next comment line.
} CommentLink;

public:
ScriptComment () ; // Constructor
~ScriptComment () ; // Destructor

// Member functions for ScriptComment
long ReadFromFile(FILE *InputFile, char *Line);

// Reads from script file rest of comment block. Prior to

// function call, first script line is already read.
void DeleteComment ();

// Removes all comment lines in comment block.
long GetNumberOfCommentLines () ;

// Returns number of lines in comment block.
CommentLink *GetCommentBlock():

// Returns reference pointer to comment block.
void SetCommentBlock (CommentLink *Block);

// Assigns reference pointer to comment block.
ScriptComment* Instance();

// Returns reference pointer of instance.
virtual char *ClassName();

// Returns class identification string.

private:

long NurberOfCommentLines;

// Number of lines in ccmment block.
CommentLink *Comment;

// Reference pointer to next comment line.

}; // end class ScriptComment

/7 =
// Classtype: ScriptOption
// Derived from: ScriptEvent
// Base for: Scriptobject
// Remarks: This class provides functions for parameters
// associated with script options.
/| ====ss=sz=mssszssssszescssssss === ===s==s====ss=sssss==s=
class ScriptOption : public ScriptEvent {
public:
ScriptOption(); // Constructor

~ScriptOption(); // Destructor

77

// Member functions for ScriptOption
double GetScriptTimeFactor():
// Returns script time factor,
void SetScriptTimeFactor(double Factor):
// Assigns script time factor.
double GetScriptTimeAdjustment ();
// Returns script time adjustment.
void SetScriptTimeAdjustment (double Adjustment);
// Assigns script time adjustment.
char *GetDelayType():
// Returns script delay type.
void SetDelayType (char *Type);
// Bssigns script delay type.
char *GetTimeReference();
// Returns script time reference.
void SetTimeReference(char *Reference);
// BAssigns time reference for assigning script
char *GetScriptLine();
// Returns script line or message.
void SetScriptline(char *Line):
// Assigns script line or message.
char *GetScriptFilename();
// Returns filename of script file.
void SetScriptFilename{char *Name):;
// Assigns filename of script Jile.
long GetScriptRepeatValue();
// Returns script repeat value of iterations.
void SetScriptRepeatValue(long Value);
// Assigns script repeat value of iterations.
long GetScriptObjectNumberIncrement ();
// Returns script object no. increment.
void SetScriptObjectNumberIncrement (long Value);
// Assigns script object number increment.
ScriptOption* Instance();
// Returns reference pointer of instance.
virtual char *ClassName():;
// Returns class identification string.

private:

char *DelayType:;

// Delay type in relative or absolute.
char *TimeReference;

// Time reference in relative or absolute.
char *Scriptline;

timestamps.

// Reference pointer for scripc line or message.

char *ScriptFilename;
// Filename of script file.
long RepeatValue;
// Number of repeats for script file.
long ObjectNumberIncrement;
// Object number increment for each iteration.

78

double TimeFactor;
// Time factor for computing timestamps.
double TimeAdjustment;
// Time adjustment for computing timestamps.
}; // end class ScriptOption

APPENDIX J
Class Definition of ScriptObject

//

// Classtype: ScriptObject

// Derived from: VehicleEvent, WeaponEvent, MiscObjectEvent,

// EnvironmentEvent, ScriptOption, ScriptComment

// Base for: none

// Remarks: This class provides functions for accessing script
// events.

!/

class ScriptObject : public VehicleEvent,
public WeaponEvent,
public MiscObjectEvent,
public EnvironmentEvent,
public ScriptOption,
public ScriptComment |

public:
ScriptObject ():; // Constructor
~ScriptObject(); // Destructor

// Member functions for ScriptObject
long GetScriptEventType():

// Returns type of script event.
void SetScriptEventType(long Type):;

// Assigns type of script event.
VehicleEvent& GetVehicleEvent():

// Returns reference of vehicle event.
WeaponEventé& GetWeaponEvent();

// Returns reference of weapon event.
MiscObjectEvent& GetMiscObjectEvent():;

// Returns reference of misc object event.
EnvironmentEvent& GetEnvironmentEvent ():

// Returns reference of environment event.
ScriptOption& GetScriptOption():

// Returns reference of script option,
ScriptComment& GetScriptComment();

// Returns reference of script comment.
ScriptObject* Instance():

// Returns reference pointer of instance.
virtual char *ClassName();

// Returns class identification =string.

private:

long ScriptEventType:

// Type of event for script object.

}; // end class ScriptObject

80

APPENDIX K
NPSNET-OASIS Network Interface

The following NPSNET data structure is used for sending vehicle updates over the net.
Attributes marked with an asterisk are used in the vehicle update message packet.

struct vehpostype |{

int
int
int
int
int
int
int
fioat

float

vehtype;
control;
gunfire;
alive;

rounds;
deadframes;
coll_interval;
pos[3],
eye[3],
lookatpt (3],
lookfrompt [3];
direction,
viewdirection,
elev,

gunelev,
speed,

roll,

pitch,

gas,

coll range;

}; // end structure

* % % ¥

% * ¥ XN %

The following is an example of the transformation of a VEHICLE_ACTIVATE script
event to a data structure in the local state of the world in NPSNET-OASTS network

interface.

Vehicle [Number]

Vehicle [Number)
Vehicle [Number]
Vehicle [Namber]
Vehicle[Number])
Vehicle[Number]
Vehicle [Number]
Vehicle [Number]
Vehicle[Number;

Vehicle [Number]
Vehicle [Number]

.vehtype

.control
.gunfire
.alive

. rounds
.deadframes
.coll_interval
.pos[X]

.pos (2]

.elev
.eye[X]

LookForObjectTypeNumber (
ScriptEvent .GetObjectDescription()};

= SCRIPTED;

0;

= TRUE;

DEFAULT_VEHICLE_ROUNDS:
0;
0;

= ScriptEvent.GetEasting({()’
= MAX_UTM NORTHING -

ScriptEvent.GetNorthing());
ScriptEvent.GetElevation();
0.0;

81

Vehicle [Number] .eye[Y] = 0.0;
Vehicle[Number] .eyelZ] 0.0;
Vehicle [Number] .lookatpt [X] = 0.0;
Vehicle[Number].lookatpt [Y] = 0.0;
Vehicle[Number] .lookatpt (2} = 0.0;
Vehicle [Number] .lookfrompt (X] = 0.0;
Vehicle[Number] .lookfrompt [¥Y] = 0.0;
Vehicle[Number] .lookfrompt[2] = 0.0;
Vehicle[Number) .direction = ScriptEvent.GetHeading({();
Vehicle[Number] .viewdirection = 0.0;

Vehicle[Number].elev

ScriptEvent.GetElevaticn{);

Vehicle[Number] .gunelev = 0.0;

Vehicle[Number] . speed = ScriptEvent.GetVelocity():
Vehicle{Number].roll = 0.0;

Vehicle[Number] .pitch = 0.0;

Vehicle [Number] .gas = DEFAULT_VEKRICLE_GAS,

Vehicle(Number] .coll range 0.0;

82

LIST OF REFERENCES

1. Badler, N. 1, Barsky, N. B., and Zeltzer, D., Making Them Move: Mechanics,
Control and Animation of Articulated Figures, Morgan Kaufmann Publishers, Inc., pp. 3-
93, 1991.

2. Booch, Grady, Object Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., pp. 25-131, 1991.

3. Chuang, R.and Entis G., 3-D Shaded Computer Animation - Step-by-Step, IEEE
Computer Graphics and Applications Volume 3, pp. 18-25, 1983.

4. Drummond, W. T. and Nizolak, J. P, A Graphics Workstations Field Artillery
Forward Observer Simulation Trainer, M.S. Thesis, Naval Postgraduate School,
Monterey, California, pp. 56 - 69, June 1989.

S. Entis, Glenn, “Computer Animation: 3-D Motion Specification and Controi,”
SIGGRAPH ‘87 Course Notes, Course #10, pp.45-50, 27-31 July 1987.

6. Reynolds, C. W. “Computer Animation with Script and Actors,” SIGGRAPH ‘82,
Computer Graphics, Volume 16, Number 3, pp. 289-296, July 1982.

7. Silicon Graphics, Inc., IRIS Programmer’s Reference Manual, Volume II,Version
5.0, Section 3, Mountain View, California, 1990.

8. Zeltzer, David, Implementing and Interacting with Real-Time Microworlds,
SIGGRAPH ‘89 Course Notes, Course #29,31 July-4 August 1989.

9. Zyda, Michael J., Book Number 7, Graphics and Video Laboratory Course Notes,
Naval Postgraduate School, Monterey, California, pp. 3-13, 2 April 1991.

10. Zyda, Michael J. and Pratt, David R. NPSNET: A 3D Visual Simulator for Virtual
World Exploration and Experimentation, SID International Symposium Digest of
Technical Papers, pp.361-364, May 1991.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library

Code 52

Naval Postgraduate School
Monterey, California 93943-5100

Dr. Michael J. Zyda

Code CS/Zk, Department of Computer Science
Naval Postgraduate School

Monterey, California 93943-5100

David R. Pratt

Code. CS/Pr, Department of Computer Science
Naval Postgraduate School

Monterey, California 93943-5100

Lt. Phillip D, West, USN
898 Rock Street
Archbald, Pennsylvania 18403

